Skip to main content
Log in

Serum growth factors and neuroprotective surveillance

Focus on IGF-I

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The adult brain requires a constant trophic input for appropriate function. Although the main source of trophic factors for mature neurons is considered to arise locally from glial cells and synaptic partners, recent evidence suggests that hormonal-like influences from distant sources may also be important. These include not only relatively well-characterized steroid hormones that cross the brain barriers, but also blood-borne protein growth factors able to cross the barriers and exert unexpected, albeit specific, trophic actions in diverse brain areas. Insulin-like growth factor I (IGF-I) is until now the serum neurotrophic factor whose actions on the adult brain are best-characterized. This is because IGF-I has been known for many years to be present in serum, whereas the presence in the circulation of other more classical neurotrophic factors has only recently been recognized. Thus, new evidence strongly suggests that IGF-I, and other blood-borne neurotrophic factors such as Fibroblast Growth Factor (FGF-2) or the neurotrophins, exert a tonic trophic input on brain cells, providing a mechanism for what we may refer to as neuroprotective surveillance. Protective surveillance includes “first-line” defense mechanisms ranging from blockade of neuronal death after a wide variety of cellular insults to upregulation of neurogenesis when defenses against neuronal death are overcome. Most importantly, surveillance should also encompass modulation of homeostatic mechanisms to prevent neuronal derangement. These will include modulation of basic cellular processes such as metabolic demands and maintainance of cell-membrane potential as well as more complex processes such as regulation of neuronal plasticity to keep neurons able to respond to constantly changing functional demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walz W. (1989) Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33, 309–333.

    Article  PubMed  CAS  Google Scholar 

  2. Rubin L. L. and Staddon J. M. (1999) The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22, 11–28.

    Article  PubMed  CAS  Google Scholar 

  3. Strazielle N. and Ghersi-Egea J. F. (2000) Choroid plexus in the central nervous system: biology and physiopathology. J. Neuropathol. Exp. Neurol. 59, 561–574.

    PubMed  CAS  Google Scholar 

  4. Isackson P. J. (1995) Trophic factor response to neuronal stimuli or injury. Curr. Opin. Neurobiol. 5, 350–357.

    Article  PubMed  CAS  Google Scholar 

  5. Morganti-Kossman M. C., Lenzlinger P. M., Hans V., Stahel P., Csuka E., Ammann E., et al. (1997) Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol. Psychiatry 2, 133–136.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy R. A., Saide J. D., Blanchard M. H., and Young M. (1977). Nerve growth factor in mouse serum and saliva: role of the submandibular gland. Proc. Natl. Acad. Sci. USA 74, 2330–2333.

    Article  PubMed  CAS  Google Scholar 

  7. Sjogren K., Liu J. L., Blad K., Skrtic S., Vidal O., Wallenius V., et al. (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl. Acad. Sci. USA 96, 7088–7092.

    Article  PubMed  CAS  Google Scholar 

  8. Nakahashi T., Fujimura H., Altar C. A., Li J., Kambayashi J., Tandon N. N., and Sun B. (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 470, 113–117.

    Article  PubMed  CAS  Google Scholar 

  9. Gilmore J. H., Jarskog L. F., Lindgren J. C., McEvoy J. P., and Xiao H. (1997) Neurotrophin-3 levels in the cerebrospinal fluid of patients with schizophrenia or medical illness. Psychiatry Res. 73, 109–113.

    Article  PubMed  CAS  Google Scholar 

  10. Hock C., Heese K., Muller-Spahn F., Huber P., Riesen W., Nitsch R. M., and Otten U. (2000) Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease. Neurology 54, 2009–2011.

    PubMed  CAS  Google Scholar 

  11. Kossmann T., Stahel P. F., Lenzlinger P. M., Redl H., Dubs R. W., Trentz O., et al. (1997) Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. J. Cereb. Blood Flow Metab. 17, 280–289.

    Article  PubMed  CAS  Google Scholar 

  12. Laudiero L. B., Aloe L., Levi-Montalcini R., Buttinelli C., Schilter D., Gillessen S., and Otten U. (1992) Multiple sclerosis patients express increased levels of beta-nerve growth factor in cerebrospinal fluid. Neurosci. Lett. 147, 9–12.

    Article  PubMed  CAS  Google Scholar 

  13. Malek A. M., Connors S., Robertson R. L., Folkman J., and Scott R. M. (1997) Elevation of cerebrospinal fluid levels of basic fibroblast growth factor in moyamoya and central nervous system disorders. Pediatr. Neurosurg. 27, 182–189.

    PubMed  CAS  Google Scholar 

  14. Mizuno Y., Takada H., Urakami K., Ihara K., Kira R., Suminoe A., et al. (2000) Neurotrophin-3 levels in cerebrospinal fluid from children with bacterial meningitis, viral meningitis, or encephalitis. J. Child. Neurol. 15, 19–21.

    PubMed  CAS  Google Scholar 

  15. Mogi M. and Nagatsu T. (1999) Neurotrophins and cytokines in Parkinson’s disease. Adv. Neurol. 80, 135–139.

    PubMed  CAS  Google Scholar 

  16. Patterson S. L., Grady M. S., and Bothwell M. (1993) Nerve growth factor and a fibroblast growth factor-like neurotrophic activity in cerebrospinal fluid of brain injured human patients. Brain Res. 605, 43–49.

    Article  PubMed  CAS  Google Scholar 

  17. Tham A., Nordberg A., Grissom F. E., Carlsson-Skwirut C., Viitanen M., and Sara V. R. (1993) Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J. Neural Transm. Park Dis. Dement. Sect. 5, 165–176.

    Article  PubMed  CAS  Google Scholar 

  18. Torres-Aleman I., Barrios V., Lledo A., and Berciano J. (1996) The insulin-like growth factor I system in cerebellar degeneration. Ann. Neurol. 39, 335–342.

    Article  PubMed  CAS  Google Scholar 

  19. Busiguina S., Fernandez A. M., Barrios V., Clark R., Tolbert D. L., Berciano J., and Torres-Aleman I. (2000) Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol. Dis. 7, 657–665.

    Article  PubMed  CAS  Google Scholar 

  20. Banks W. A., Jaspan J. B., and Kastin A. J. (1997) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18, 1257–1262.

    Article  PubMed  CAS  Google Scholar 

  21. Carro E., Nunez A., Busiguina S., and Torres-Aleman I. (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.

    PubMed  CAS  Google Scholar 

  22. Deguchi Y., Naito T., Yuge T., Furukawa A., Yamada S., Pardridge W. M., and Kimura R. (2000) Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm. Res. 17, 63–69.

    Article  PubMed  CAS  Google Scholar 

  23. Pan W., Banks W. A., and Kastin A. J. (1998) Permeability of the blood-brain barrier to neurotrophins. Brain Res. 788, 87–94.

    Article  PubMed  CAS  Google Scholar 

  24. Pan W. and Kastin A. J. (1999) Entry of EGF into brain is rapid and saturable. Peptides 20, 1091–1098.

    Article  PubMed  Google Scholar 

  25. Poduslo J. F. and Curran G. L. (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280–286.

    Article  PubMed  CAS  Google Scholar 

  26. Reinhardt R. R. and Bondy C. A. (1994) Insulinlike growth factors cross the blood-brain barrier. Endocrinology 135, 1753–1761.

    Article  PubMed  CAS  Google Scholar 

  27. Stewart P. A. (2000) Endothelial vesicles in the blood-brain barrier: are they related to permeability? Cell Mol. Neurobiol. 20, 149–163.

    Article  PubMed  CAS  Google Scholar 

  28. Ferguson I. A., Schweitzer J. B., Bartlett P. F., and Johnson E. M., Jr. (1991) Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. J. Comp Neurol. 313, 680–692.

    Article  PubMed  CAS  Google Scholar 

  29. Ferry R. J., Jr., Katz L. E., Grimberg A., Cohen P., and Weinzimer S. A. (1999) Cellular actions of insulin-like growth factor binding proteins. Horm. Metab Res. 31, 192–202.

    PubMed  CAS  Google Scholar 

  30. Aberg M. A., Aberg N. D., Hedbacker H., Oscarsson J., and Eriksson P. S. (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903.

    PubMed  CAS  Google Scholar 

  31. Armstrong C. S., Wuarin L., and Ishii D. N. (2000) Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-II mRNA content in diabetic rat brain. J. Neurosci. Res. 59, 649–660.

    Article  PubMed  CAS  Google Scholar 

  32. Pulford B. E., Whalen L. R., and Ishii D. N. (1999) Peripherally administered insulin-like growth factor-I preserves hindlimb reflex and spinal cord noradrenergic circuitry following a central nervous system lesion in rats. Exp. Neurol. 159, 114–123.

    Article  PubMed  CAS  Google Scholar 

  33. Wagner J. P., Black I. B., and DiCicco-Bloom E. (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J. Neurosci. 19, 6006–6016.

    PubMed  CAS  Google Scholar 

  34. Jones J. I. and Clemmons D. R. (1995) Insulinlike growth factors and their binding proteins: biological actions. Endocr. Rev. 16, 3–34.

    Article  PubMed  CAS  Google Scholar 

  35. Yakar S., Liu J. L., Stannard B., Butler A., Accili D., Sauer B., and LeRoith D. (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 96, 7324–7329.

    Article  PubMed  CAS  Google Scholar 

  36. Ueki I., Ooi G. T., Tremblay M. L., Hurst K. R., Bach L. A., and Boisclair Y. R. (2000) Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc. Natl. Acad. Sci. USA 97, 6868–6873.

    Article  PubMed  CAS  Google Scholar 

  37. Schechter R., Holtzclaw L., Sadiq F., Kahn A., and Devaskar S. (1988) Insulin synthesis by isolated rabbit neurons. Endocrinology 123, 505–513.

    Article  PubMed  CAS  Google Scholar 

  38. Pardridge W. M. (1993) Transport of insulinrelated peptides and glucose across the bloodbrain barrier. Ann. NY Acad. Sci. 692, 126–137.

    Article  PubMed  CAS  Google Scholar 

  39. Poduslo J. F., Curran G. L., and Berg C. T. (1994) Macromolecular permeability across the bloodnerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 91, 5705–5709.

    Article  PubMed  CAS  Google Scholar 

  40. Bondy C. A., Werner H., Roberts C. T., Jr., and LeRoith D. (1990) Cellular pattern of insulinlike growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol. Endocrinol. 4, 1386–1398.

    PubMed  CAS  Google Scholar 

  41. Golden P. L., Maccagnan T. J., and Pardridge W. M. (1997) Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J. Clin. Invest. 99, 14–18.

    Article  PubMed  CAS  Google Scholar 

  42. Timmusk T., Mudo G., Metsis M., and Belluardo N. (1995) Expression of mRNAs for neurotrophins and their receptors in the rat choroid plexus and dura mater. Neuroreport 6, 1997–2000.

    Article  PubMed  CAS  Google Scholar 

  43. Moos T. and Morgan E. H. (2000) Transferrin and transferrin receptor function in brain barrier systems. Cell Mol. Neurobiol. 20, 77–95.

    Article  PubMed  CAS  Google Scholar 

  44. Aguado F., Rodrigo J., Cacicedo L., and Mellstrom B. (1993) Distribution of insulin-like growth factor-I receptor mRNA in rat brain. Regulation in the hypothalamo-neurohypophysial system. J. Mol. Endocrinol. 11, 231–239.

    Article  PubMed  CAS  Google Scholar 

  45. Bondy C. A. and Lee W. H. (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann. NY Acad. Sci. 692, 33–43.

    Article  PubMed  CAS  Google Scholar 

  46. Bach M. A., Shen-Orr Z., Lowe W. L., Jr., Roberts C. T., Jr., and LeRoith D. (1991) Insulinlike growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res. Mol. Brain Res. 10, 43–48.

    Article  PubMed  CAS  Google Scholar 

  47. Pons S., Rejas M. T., and Torres-Aleman I. (1991) Ontogeny of insulin-like growth factor I, its receptor, and its binding proteins in the rat hypothalamus. Brain Res. Dev. Brain Res. 62, 169–175.

    Article  PubMed  CAS  Google Scholar 

  48. Torres-Aleman I., Pons S., and Arevalo M. A. (1994) The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J. Neurosci. Res. 39, 117–126.

    Article  PubMed  CAS  Google Scholar 

  49. van Praag H., Christie B. R., Sejnowski T. J., and Gage F. H. (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 96, 13,427–13,431.

    Article  Google Scholar 

  50. Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. W. (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56.

    Article  PubMed  CAS  Google Scholar 

  51. Fernandez A. M., de la Vega A. G., and Torres-Aleman I. (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc. Natl. Acad. Sci. USA 95, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  52. Fernandez A. M., Gonzalez de la Vega A. G., Planas B., and Torres-Aleman I. (1999) Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivocerebellar pathway. Eur. J. Neurosci. 11, 2019–2030.

    Article  PubMed  CAS  Google Scholar 

  53. Mitchell J. J., Paiva M., Walker D. W., and Heaton M. B. (1999) BDNF and NGF afford in vitro neuroprotection against ethanol combined with acute ischemia and chronic hypoglycemia. Dev. Neurosci. 21, 68–75.

    Article  PubMed  CAS  Google Scholar 

  54. Black I. B. (1999) Trophic regulation of synaptic plasticity. J. Neurobiol. 41, 108–118.

    Article  PubMed  CAS  Google Scholar 

  55. Schuman E. (1997) Growth factors sculpt the synapse. Science 275, 1277, 1278.

    Article  PubMed  CAS  Google Scholar 

  56. Purves D. (1980) Neuronal competition. Nature 287, 585, 586.

    Article  PubMed  CAS  Google Scholar 

  57. Lee W. H., Javedan S., and Bondy C. A. (1992) Coordinate expression of insulin-like growth factor system components by neurons and neuroglia during retinal and cerebellar development. J. Neurosci. 12, 4737–4744.

    PubMed  CAS  Google Scholar 

  58. Nieto-Bona M. P., Busiguina S., and Torres-Aleman I. (1995) Insulin-like growth factor I is an afferent trophic signal that modulates calbindin-28kD in adult Purkinje cells. J. Neurosci. Res. 42, 371–376.

    Article  PubMed  CAS  Google Scholar 

  59. Torres-Aleman, I., Pons S., and Garcia-Segura L. M. (1991) Climbing fiber deafferentation reduces insulin-like growth factor I (IGF-I) content in cerebellum. Brain Res. 564, 348–351.

    Article  PubMed  CAS  Google Scholar 

  60. Satake S., Saitow F., Yamada J., and Konishi S. (2000) Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat. Neurosci. 3, 551–558.

    Article  PubMed  CAS  Google Scholar 

  61. Garcia-Segura L. M., Rodriguez J. R., and Torres-Aleman I. (1997) Localization of the insulinlike growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J. Neurocytol. 26, 479–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Torres-Aleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Aleman, I. Serum growth factors and neuroprotective surveillance. Mol Neurobiol 21, 153–160 (2000). https://doi.org/10.1385/MN:21:3:153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:21:3:153

Index Entries

Navigation