Skip to main content
Log in

Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Among several metals, vanadium has emerged as an extremely potent agent with insulin-like properties. These insulin-like properties have been demonstrated in isolated cells, tissues different animal models of type I and type II diabetes as well as a limited number of human subjects. Vanadium treatment has been found to improve abnormalities of carbohydrate and lipid metabolism and of gene expression in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of vanadium compounds have been shown to involve the activation of several key components of insulin-signaling pathways that include the mitogen-activated-protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 (ERK1/2) and p38MAPK, and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB). It is interesting that the vanadium effect on these signaling systems is independent of insulin receptor protein tyrosine kinase activity, but it is associated with enhanced tyrosine phosphorylation of insulin receptor substrate-1. These actions seem to be secondary to vanadium-induced inhibition of protein tyrosine phosphatases. Because MAPK and PI3-K/PKB pathways are implicated in mediating the mitogenic and metabolic effects of insulin, respectively, it is plausible that mimicry of these pathways by vanadium serves as a mechanism for its insulin-like responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. A., Cheng, N., Bryden, N. A., et al. (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46, 1786–1791.

    Article  PubMed  CAS  Google Scholar 

  2. Ybarra, J., Behrooz, A., Gabriel, A., Koseoglu, M. H., and Ismail-Beigi, F. (1997) Glycemia-lowering effect of cobalt chloride in the diabetic rat: increased GLUT1 mRNA expression. Mol. Cell. Endocrinol. 133, 151–160.

    Article  PubMed  CAS  Google Scholar 

  3. Ozcelikay, A. T., Becker, D. J., Ongemba, L. N., Pottier, A. M., Henquin, J. C., and Brichard, S. M. (1996). Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am. J. Physiol. 270, E344-E352.

    PubMed  CAS  Google Scholar 

  4. Barbera, A., Gomis, R. R., Prats, N., et al. (2001) Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: a long-term study. Diabetologia 44, 507–513.

    Article  PubMed  CAS  Google Scholar 

  5. Brichard, S. (2003) Outlook of diabetes treatment possibilities with vanadium and other metal salts in Diabetes: From Research to Diagnosis and Treatment (Shafrir, E., Raz, Z., and Skyler, J., eds.), Martin Dunitz Group: London, pp. 497–509.

    Google Scholar 

  6. Cam, M. C., Brownsey, R. W., and McNeill J. H. (2000) Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent?. Can. J. Physiol. Pharmacol. 78, 829–847.

    Article  PubMed  CAS  Google Scholar 

  7. Srivastava, A. K. and Mehdi, M. Z. (2005) Insulinomimetic and anti-diabetic effects of vanadium compounds. Diabetic Med. 22, 2–13.

    Article  PubMed  CAS  Google Scholar 

  8. Simon, S. F. and Taylor, C. G. (2001) Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp. Biol. Med. 226, 43–51.

    CAS  Google Scholar 

  9. Cohen, N., Halberstam, M., Shlimovich, P., Chang, C. J., Shamoon, H., and Rossetti, L. (1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 95, 2501–2509.

    PubMed  CAS  Google Scholar 

  10. Boden, G., Chen, X., Ruiz, J., van Rossum, G. D., and Turco, S. (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 45, 1130–1135.

    Article  PubMed  CAS  Google Scholar 

  11. Goldfine, A. B., Patti, M. E., Zuberi, L., et al. (2000) Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49, 400–410.

    Article  PubMed  CAS  Google Scholar 

  12. Cusi, K., Cukier, S., DeFronzo, R. A., Torres, M., Puchulu, F. M., and Redondo, J. C. (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J. Clin. Endocrinol. Metab. 86, 1410–1417.

    Article  PubMed  CAS  Google Scholar 

  13. Tolman, E. L., Barris, E., Burns, M., Pansini, A., and Partridge, R. (1979) Effects of vanadium on glucose metabolism in vitro. Life Sci. 25, 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  14. Shechter, Y. and Karlish, S. J. (1980) Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284, 556–558.

    Article  PubMed  CAS  Google Scholar 

  15. Dubyak, G. R. and Kleinzeller, A. (1980) The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+) ATPase inhibitor. J. Biol. Chem. 255, 5306–5312.

    PubMed  CAS  Google Scholar 

  16. Degani, H., Gochin, M., Karlish, S. J., and Shechter, Y. (1981) Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 20, 5795–5799.

    Article  PubMed  CAS  Google Scholar 

  17. Green, A. (1986) The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem. J. 238, 663–669.

    PubMed  CAS  Google Scholar 

  18. Tamura, S., Brown, T. A., Whipple, J. H., et al. (1984) A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J. Biol. Chem. 259, 6650–6658.

    PubMed  CAS  Google Scholar 

  19. Clark, A. S., Fagan, J. M., and Mitch, W. E. (1985) Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem. J. 232, 273–276.

    PubMed  CAS  Google Scholar 

  20. Strout, H. V., Vicario, P. P., Saperstein, R., and Slater, E. E. (1989) The insulin-mimetic effect of vanadate is not correlated with insulin receptor tyrosine kinase activity nor phosphorylation in mouse diaphragm in vivo. Endocrinology 124, 1918–1924.

    Article  PubMed  CAS  Google Scholar 

  21. Fantus, I. G., Kadota, S., Deragon, G., Foster, B., and Posner, B. I. (1989) Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28, 8864–8871.

    Article  PubMed  CAS  Google Scholar 

  22. Shisheva, A. and Shechter, Y. (1992) Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry 31, 8059–8063.

    Article  PubMed  CAS  Google Scholar 

  23. White, M. F. (2003) Insulin signaling in health and disease. Science 302, 1710–1711.

    Article  PubMed  CAS  Google Scholar 

  24. White, M. F. and Kahn, C. R. (1994) The insulin signaling system. J. Biol. Chem 269, 1–4.

    PubMed  CAS  Google Scholar 

  25. White, M. F. (2002) IRS proteins and the common path to diabetes. Am. J. Physiol. 283, E413-E422.

    CAS  Google Scholar 

  26. Shepherd, P. R., Withers, D. J., and Siddle, K. (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490.

    PubMed  CAS  Google Scholar 

  27. Downward, J. (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267.

    Article  PubMed  CAS  Google Scholar 

  28. Dong, L. Q., Zhang, R. B., Langlais, P., et al. (1999) Primary structure, tissue distribution, and expression of mouse phosphoinositide-dependent protein kinase-1, a protein kinase that phosphorylates and activates protein kinase Czeta. J. Biol. Chem. 274, 8117–8122.

    Article  PubMed  CAS  Google Scholar 

  29. Baumann, C. A., Ribon, V., Kanzaki, M., et al. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207.

    Article  PubMed  CAS  Google Scholar 

  30. Chiang, S. H., Baumann, C. A., Kanzaki, M., et al. (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948.

    Article  PubMed  CAS  Google Scholar 

  31. Khan, A. H. and Pessin, J. E. (2002) Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45, 1475–1483.

    Article  PubMed  CAS  Google Scholar 

  32. Swarup, G., Cohen, S., and Garbers, D. L. (1982) Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem. Biophys. Res. Commun. 107, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  33. Pugazhenthi, S. and Khandelwal, R. L. (1993) Does the insulin-mimetic action of vanadate involve insulin receptor kinase?. Mol. Cell. Biochem. 127–128, 211–218.

    Article  PubMed  Google Scholar 

  34. D'Onofrio, E., Le, M. Q., Chiasson, J. L., and Srivastava, A. K. (1994) Activation of mitogen activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Lett. 340, 269–275.

    Article  PubMed  Google Scholar 

  35. Pandey, S. K., Anand-Srivastava, M. B., and Srivastava, A. K. (1998) Vanadyl sulfate-stimulated glycogen synthesis is associated with activation of phosphatidylinositol 3-kinase and is independent of insulin receptor tyrosine phosphorylation. Biochemistry 37, 7006–7014.

    Article  PubMed  CAS  Google Scholar 

  36. Meyerovitch, J., Backer, J. M., and Kahn, C. R. (1989) Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats. J. Clin. Investig. 84, 976–983.

    PubMed  CAS  Google Scholar 

  37. Venkatesan, N., Avidan, A., and Davidson, M. B. (1991) Antidiabetic action of vanadyl in rats independent of in vivo insulin-receptor kinase activity. Diabetes 40, 492–498.

    Article  PubMed  CAS  Google Scholar 

  38. Blondel, O., Simon, J., Chevalier, B., and Portha, B. (1990) Impaired insulin action but normal insulin receptor activity in diabetic rat liver: effect of vanadate. Am. J. Physiol. 258, E459-E467.

    PubMed  CAS  Google Scholar 

  39. Shechter, Y. (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39, 1–5.

    Article  PubMed  CAS  Google Scholar 

  40. Srivastava, A. K. (1995) Potential use of vanadium compounds in the treatment of diabetes mellitus. Expert Opin. Investig. Drugs 4, 525–536.

    Article  CAS  Google Scholar 

  41. Chou, C. K., Dull, T. J., Russell, D. S., et al. (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J. Biol. Chem. 262, 1842–1847.

    PubMed  CAS  Google Scholar 

  42. Posner, B. I., Faure, R., Burgess, J. W., et al. (1994) Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269, 4596–4604.

    PubMed  CAS  Google Scholar 

  43. Peters, K. G., Davis, M. G., Howard, B. W., et al. (2003) Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J. Inorg. Biochem. 96, 321–330.

    Article  PubMed  CAS  Google Scholar 

  44. Shisheva, A. and Shechter, Y. (1993) Role of cytosolic tyrosine kinase in mediating insulin-like actions of vanadate in rat adipocytes. J. Biol. Chem. 268, 6463–6469.

    PubMed  CAS  Google Scholar 

  45. Elberg, G., He, Z., Li, J., Sekar, N., and Shechter, Y. (1997) Vanadate activates membranous nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes 46, 1684–1690.

    Article  PubMed  CAS  Google Scholar 

  46. Molero, J.C., Martinez, C., Andres, A., Satrustegui, J., and Carrascosa, J. M. (1998) Vanadate fully stimulates insulin receptor substrate-1 associated phosphatidyl inositol 3-kinase activity in adipocytes from young and old rats. FEBS Lett. 425, 298–304.

    Article  PubMed  CAS  Google Scholar 

  47. Kim, Y. R., Cha, H. Y., Lim, K., et al. (2003) Activation of epidermal growth factor receptor is responsible for pervanadate-induced phospholipase D activation. Exp. Mol. Med. 35, 118–124.

    PubMed  CAS  Google Scholar 

  48. Wang, Y. Z. and Bonner, J. C. (2000) Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Am. J. Respir. Cell Mol. Biol. 22, 590–596.

    PubMed  CAS  Google Scholar 

  49. Maa, M. C. and Leu, T. H. (1998) Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem. Biophys. Res. Commun. 251, 344–349.

    Article  PubMed  CAS  Google Scholar 

  50. Pandey, S. K., Théberge, J. F., Bernier, M., and Srivastava, A. K. (1999) Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 38, 14,667–14,675.

    Article  CAS  Google Scholar 

  51. Molero, J. C., Perez, C., Martinez, C., Villar, M., Andres, A., Fermin, Y., and Carrascosa, J. M. (2002) Activation of MAP kinase by insulin and vanadate in adipocytes from young and old rats. Mol. Cell Endocrinol. 189, 77–84.

    Article  PubMed  CAS  Google Scholar 

  52. Tardif, A., Julien, N., Chiasson, J. L., and Coderre, L. (2003) Stimulation of glucose uptake by chronic vanadate pretreatment in cardiomyocytes requires PI 3-kinase and p38 MAPK activation. Am. J. Physiol. 284, E1055-E1064.

    CAS  Google Scholar 

  53. Berger, J., Hayes, N., Szalkowski, D. M., and Zhang, B. (1994) PI 3-kinase activation is required for insulin stimulation of glucose transport into L6 myotubes. Biochem. Biophys. Res. Commun. 205, 570–576.

    Article  PubMed  CAS  Google Scholar 

  54. Li, J., Elberg, G., Sekar, N., Bin, H. Z., and Shechter, Y. (1997) Antilipolytic actions of vanadate and insulin in rat adipocytes mediated by distinctly different mechanisms Endocrinology 138, 2274–2279.

    Article  PubMed  CAS  Google Scholar 

  55. Donthi, R. V., Huisamen, B., and Lochner, A. (2000) Effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovasc. Drugs Ther. 14, 463–470.

    Article  PubMed  CAS  Google Scholar 

  56. Sekar, N., Li, J., He, Z., Gefel, D., and Shechter, Y. (1999) Independent signal-transduction pathways for vanadate and for insulin in the activation of glycogen synthase and glycogenesis in rat adipocytes. Endocrinology 140, 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  57. Tsiani, E., Bogdanovic, E., Sorisky, A., Nagy, L., and Fantus, I. G. (1998) Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C. Diabetes 47, 1676–1686.

    Article  PubMed  CAS  Google Scholar 

  58. Hajduch, E., Litherland, G. J., and Hundal, H.S. (2001) Protein kinase B (PKB/Akt)—a key regulator of glucose transport? FEBS Lett. 492, 199–203.

    Article  PubMed  CAS  Google Scholar 

  59. Srivastava, A. K. and Pandey, S. K. (1998) Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol. Cell Biochem. 182, 135–141.

    Article  PubMed  CAS  Google Scholar 

  60. Nakae, J., Park, B. C., and Accili, D. (1999) Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J. Biol. Chem. 274, 15,982–15,985.

    Article  CAS  Google Scholar 

  61. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G., and Cohen, P. (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17,179–17,183.

    Article  CAS  Google Scholar 

  62. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.

    Article  PubMed  CAS  Google Scholar 

  63. Lochlead, P. A., Coghlan, M., Rice, S. Q., and Sutherland, C. (2001) Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50, 937–946.

    Article  Google Scholar 

  64. Nakae, J., Kitamura, T., Silver, D. L., and Accili, D. (2001) The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Investig. 108, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  65. Mosseri, R., Waner, T., Shefi, M., Shafrir, E., and Meyerovitch, J. (2000) Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vandadate treatment on hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Metabolism 49, 321–325.

    Article  PubMed  CAS  Google Scholar 

  66. Rodriguez-Gil, J. E., Gomez-Foix, A. M., Fillat, C., Bosch, F., and Guinovart, J. J. (1991) Activation by vanadate of glycolysis in hepatocytes from diabetic rats. Diabetes 40, 1355–1359.

    Article  PubMed  CAS  Google Scholar 

  67. Yuen, V. G., Pederson, R. A., Dai, S., Orvig, C., and McNeill, J. H. (1996) Effects of low and high dose administration of bis(maltolato)oxovanadium(IV) on fa/fa Zucker rats. Can. J. Physiol. Pharmacol. 74, 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  68. Brichard, S. M., Desbuquois, B., and Girard, J. (1993) Vanadate treatment of diabetic rats reverses the impaired expression of genes involved in hepatic glucose metabolism: effects on glycolytic and gluconeogenic enzymes, and on glucose transporter GLUT2. Mol. Cell. Endocrinol. 91, 91–97.

    Article  PubMed  CAS  Google Scholar 

  69. Singh, J., Nordlie, R. C., and Jorgenson, R. A. (1981) Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase. Biochim. Biophys. Acta 678, 477–482.

    PubMed  CAS  Google Scholar 

  70. Sekar, N., Qian, S., and Shechter, Y. (1998) Vanadate elevates lipogenicity of starved rat adipose tissue: mechanism of action. Endocrinology 139, 2514–2518.

    Article  PubMed  CAS  Google Scholar 

  71. Marzban, L., Rahimian, R., Brownsey, R. W., and McNeill, J. H. (2002) Mechanisms by which bis(maltolato)oxovanadium(IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrinology 143, 4636–4645.

    Article  PubMed  CAS  Google Scholar 

  72. Goldfine, A. B., Simonson, D. C., Folli, F., Patti, M. E., and Kahn, C. R. (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 80, 3311–3320.

    Article  PubMed  CAS  Google Scholar 

  73. Mohammad, A., Bhanot, S., and McNeill, J. H. (2001) In vivo effects of vanadium in diabetic rats are independent of changes in PI-3 kinase activity in skeletal muscle. Mol. Cell. Biochem. 223, 103–108.

    Article  PubMed  CAS  Google Scholar 

  74. Marzban, L., Bhanot, S., and McNeill, J. H. (2001) In vivo effects of insulin and bis(maltolato)oxovanadium (IV) on PKB activity in the skeletal muscle and liver of diabetic rats. Mol. Cell. Biochem. 223, 147–157.

    Article  PubMed  CAS  Google Scholar 

  75. Semiz, S. and McNeill, J. H. (2002) Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol. Cell. Biochem. 236, 123–131.

    Article  PubMed  CAS  Google Scholar 

  76. Pugazhenthi, S., Tanha, F., Dahl, B., and Khandelwal, R. L. (1996) Inhibition of a Src homology 2 domain containing protein tyrosine phosphatase by vanadate in the primary culture of hepatocytes. Arch. Biochem. Biophys. 335, 273–282.

    Article  PubMed  CAS  Google Scholar 

  77. Meyerovitch, J., Backer, J. M., Csermely, P., Shoelson, S. E., and Kahn, C. R. (1992) Insulin differentially regulates prohepatoma cells. Biochemistry 31, 10,338–10,344.

    Article  CAS  Google Scholar 

  78. Pugazhenthi, S., Tanha, F., Dahl, B., and Khandelwal, R. L. (1995) Decrease in protein tyrosine phosphatase activities in vanadate-treated obese Zucker (fa/fa) rat liver. Mol. Cell. Biochem. 153, 125–129.

    Article  PubMed  CAS  Google Scholar 

  79. Mohammad, A., Wang, J. and McNeill, J. H. (2002) Bis(maltolato)oxovanadium(IV) inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo. Mol. Cell. Biochem. 229, 125–128.

    Article  PubMed  CAS  Google Scholar 

  80. Mehdi, M. and Srivastava, A. K. (2003) Organo-vanadium (OV) compounds as potent activators of ERK 1/2/ Akt and inhibitors of PTPase activity: role in insulinmimesis. FASEB J. 17, 174 (abstract).

    Google Scholar 

  81. Goldstein, B. J. (2002) Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. J. Clin. Endocrinol. Metab. 87, 2474–2480.

    Article  PubMed  CAS  Google Scholar 

  82. Zinker, B. A., Rondinone, C. M., Trevillyan, J. M., et al. (2002) PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl. Acad. Sci. USA 99, 11,357–11,362.

    Article  CAS  Google Scholar 

  83. Maehama, T. and Dixon, J. E. (1991) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13,375–13,378.

    Google Scholar 

  84. Schmid, A. C., Byrne, R. D., Vilar, R., and Woscholski, R. (2004) Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett. 566, 35–38.

    Article  PubMed  CAS  Google Scholar 

  85. Butler, M., McKay, R. A., Popoff, I. J., et al. (2002) Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  86. Théberge, J. F., Mehdi, M. Z., Pandey, S. K., and Srivastava, A. K. (2003) Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Arch. Biochem. Biophys. 420, 9–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, M.Z., Pandey, S.K., Théberge, JF. et al. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys 44, 73–81 (2006). https://doi.org/10.1385/CBB:44:1:073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:1:073

Index Entries

Navigation