Skip to main content
Log in

Effects of zinc deficiency and supplementation on the glycogen contents of liver and plasma lactate and leptin levels of rats performing acute exercise

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate how zinc (Zn) deficiency and supplementation affect glycogen content of the liver and plasma lactate and leptin levels of rats performing acute swimming exercise just before the blood samples were obtained. Four sets of 10 rats each served as the (1) Zn-deficient group, (2) Zn-supplemented group, (3) swimming controls, and (4) normal controls. Plasma lactate levels of Zn-deficient animals were significantly higher than those in the other three groups (p<0.01), and those in the swimming controls (group 3) were significantly higher than in the Zn-supplemented animals, group 2 (p<0.01). The plasma glucose of the Zn-deficient group was significantly higher than all other groups (p<0.01) and that of group 2 was significantly lower than group 4 (p<0.01). Glycogen levels in liver of the Zn-deficient animals was significantly lower than groups 2 and 4 (p<0.01), and, in turn, were higher than for group 3 (p<0.01). The plasma leptin and Zn levels of group 1 were significantly lower than in all other groups (p<0.01). These results suggest that Zn deficiency exerts a negative influence in the above-mentioned parameters and that Zn supplementation has the opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dressenderfor, C. E. Wade, C. L. Keen, et al., Plasma mineral levels in marathon runners during a 20-day road race, Phys. Sportsmed. 10, 113–118 (1982).

    Google Scholar 

  2. A. Cordova, Variations in serum iron and fatigue levels after elective abdominal, Surg. Med. Sci. Res. 20, 119–120 (1992).

    CAS  Google Scholar 

  3. G. Haralambie, Serum zinc in athletes in training, Int. J. Sports Med. 2, 135–138 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. F. Couzy, P. Lafargue, and C. Y. Guezennec, Zinc metabolism in the athlete: influence of training nutrition and other factors, Int. J. Sports. Med. 11, 263–266 (1990).

    PubMed  CAS  Google Scholar 

  5. S. Khaled, J. F. Brun, G. Cassanas, et al., Effects of zinc supplementation on blood rheology during exercise, Clin. Hemorheol. Microcirc. 20, 1–10 (1999).

    PubMed  CAS  Google Scholar 

  6. A. Cordova and M. Alvarez-Mon, Behaviour of zinc in physical exercise: a special reference to immunity and fatigue, Neurosci. Biobehav. Rev. 19, 439–445 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. A. Cordova and F. J. Navas, Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sportsmen, Ann. Nutr. Metab. 42, 274–282 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. S. Moschos, J. L. Chan, and C. S. Mantzoros, Leptin and reproduction, Fertil. Steril. 77, 433–44 (2002).

    Article  PubMed  Google Scholar 

  9. H. F. Mangian, R. G. Lee, G. L. Paul, et al., Zinc deficiency suppresses plasma leptin concentrations in rats, J. Nutr. Biochem. 9, 47–51 (1998).

    Article  CAS  Google Scholar 

  10. C. S. Mantzoros, A. S. Prasad, F. W. J. Beck, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr. 17, 270–275 (1998).

    PubMed  CAS  Google Scholar 

  11. M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc may be a mediator of leptin production in humans, Life Sci. 66, 2143–2149 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. C. Pagano, M. Marzolo, M. Granzotto, et al., Acute effects of exercise on circulating leptin in leal and genetically obese fa/fa rats, Biochem. Biophys. Res. Commun. 255, 698–702 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. J. S. Fisher, R. E. Van-Pelt, O. Zinder, et al., Acute exercise effect on post absorptive serum leptin, Eur. J. Appl. Physiol. 91, 680–686 (2001).

    CAS  Google Scholar 

  14. M. Zaccaria, A. Ermolao, S. Roi, et al., Leptin reduction after endurance races differing in duration and energy expenditure, Eur. J. Appl. Physiol. 87, 108–111 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. C. S. Bediz, A. K. Baltac, A. M. Tiftik, et al., Effects of zinc deficiency on some hormones in rats, Selcuk J. Med. 15, 59–63 (1999).

    Google Scholar 

  16. A. K. Baltac, N. Ergene, A. Ates, et al., Serum zinc levels and effect of zinc supplementation on cellular immunity in experimentally induced Toxoplasma gondii infections, J. Turgut Ozal Med. Center 2, 130–134 (1995).

    Google Scholar 

  17. D. Hopwood, Fixation and fixatives, in The Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stevens, eds., Bath Press, Avon, pp. 21–43 (1990).

    Google Scholar 

  18. H. C. Cook, Carbohydrates, in The Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stevens, eds., Bath Press, Avon, pp. 177–213 (1990).

    Google Scholar 

  19. P. J. Fraker, R. Caruso, and F. Kierszenbaum, Alteration in the immune and nutritional status of mice by synergy between zinc deficiency and infection with Trypanosoma cruzi, J. Nutr. 112, 1224–1229 (1982).

    PubMed  CAS  Google Scholar 

  20. S. S. Kutti and J. Kutti, Zinc supplementation in anorexia nervosa, Am. J. Clin. Nutr. 44, 581–582 (1986).

    PubMed  Google Scholar 

  21. S. Khaled, J. F. Brun, J. P. Micallel, et al., Serum zinc and blood rheology in sportsmen (football players), Clin. Hemorheol. Microcirc. 17, 47–58 (1997).

    PubMed  CAS  Google Scholar 

  22. G. Gold and G. M. Grodsky, Kinetic aspects of comparrmental storage and secretion of insulin and zinc, Experientia 40, 1105–1114 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. R. C. Noland, J. T. Baker, S. R. Boudreau, et al., Effect of intense training on plasma leptin in male and female swimmers, Med. Sci. Sports. Exerc. 33, 227–231 (2001).

    PubMed  CAS  Google Scholar 

  24. I. Karamouzis, M. Karamouzis, I. S. Vrabas, et al., The effects of marathon swimming on serum leptin and plasma neuropeptide Y levels, Clin. Chem. Lab. Med. 40, 132–136 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. M. S. Hickey and D. J. Calsbeek, Plasma leptin and exercise: recent findings, Sports Med. 31, 583–589 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. M. Gleeson and N. C. Bishop, Elite athlete immunology: importance of nutrition, Int. J. Sports. Med. 1, 44–50 (2000).

    Article  Google Scholar 

  27. H. C. Lukaski, Magnesium, zinc, and chromium nutriture and physical activity, Am. J. Clin. Nutr. 72, 585–593 (2000).

    Google Scholar 

  28. A. Singh, D. A. Papanicolaou, L. L. Lawrence, et al., Neuroendocrine responses to running in women after zinc and vitamin E supplementation, Med. Sci. Sports Exerc. 31, 536–542 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. J. F. Brun, C. Dieu-Cambrezy, A. Charpiat, et al., Serum zinc in highly trained adolescent gymnasts, Biol. Trace. Element Res. 471, 373–378 (1995).

    Google Scholar 

  30. M. K. Song, I. K. Hwang, M. J. Rosenthal, et al., Antidiabetic actions of arachidonic acid and zinc in genetically diabetic Goto-Kakizaki rats, Metabolism 52, 7–12 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasim Baltaci, A., Ozyurek, K., Mogulkoc, R. et al. Effects of zinc deficiency and supplementation on the glycogen contents of liver and plasma lactate and leptin levels of rats performing acute exercise. Biol Trace Elem Res 96, 227–236 (2003). https://doi.org/10.1385/BTER:96:1-3:227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:227

Index Entries

Navigation