Skip to main content
Log in

Vanadium and tungsten derivatives as antidiabetic agents

A review of their toxic effects

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Tungstate is an oxyanion that has biological similarities to vanadate. In recent years, a number of studies have shown the antidiabetic effects of oral tungstate in animal models of diabetes. However, because of the tissue accumulation and potential toxicity derived from chronic administration of vanadium and tungsten compounds, the pharmacological use of vanadate or tungstate in the treatment of diabetes is not necessarily exempt from concern. In the context of a potential use in the treatment of human diabetes mellitus, the most relevant toxic effects of vanadium derivatives are reviewed and compared with those reported for tungsten. Hematological and biochemical alterations, loss of body weight, nephrotoxicity, immunotoxicity, reproductive and developmental toxicity, and behavioral toxicity have been reported to occur following exposure to vanadium compounds. Moreover, vanadium also has a mitogenic activity affecting the distribution of chromosomes during mitosis and inducing aneuploidyrelated end points. In contrast to vanadate, studies about the toxic effects of tungstate are very scant. Early investigations in cats, rabbits, dogs, mice, and rats showed that tungstate was less toxic than vanadate when given intravenously. Although in vitro investigations showed a direct effect of tungstate on the embryo and fetus of mice at concentrations similar to those causing effects in vivo, information on the potential cellular toxicity of tungstate is particularly scarce. Taking into account the recent interest of tungstate as a new potential oral antidiabetic agent, an exhaustive evaluation of its toxicity in mammals is clearly necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Barceloux, Vanadium, Clin. Toxicol. 37, 265–278 (1999).

    Article  CAS  Google Scholar 

  2. D. C. Crans, Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds, J. Inorg. Biochem. 80, 123–131 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. E. Tsiani and I. G. Fantus, Vanadium compounds. Biological actions and potential as pharmacological agents, Trends Endocrinol. Metabol. 8, 51–58 (1997).

    Article  CAS  Google Scholar 

  4. P. Poucheret, S. Verma, M. D. Grynpas, and J. H. McNeill, Vanadium and diabetes. Mol. Cell. Biochem. 188, 73–80 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. M. C. Cam, R. W. Brownsey, and J. H. McNeill, Mechanisms of vanadium action: insulin-mimetic or insulin enhancing agent? Can. J. Physiol. Pharmacol. 78, 829–847 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. I. Goldwaser, D. Gefel, E. Gershonov, M. Fridkin, and Y. Shechter, Insulin-like effects of vanadium: basic and clinic implications, J. Inorg. Biochem. 80, 21–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. S. Ramanadham, C. Heyliger, M. J. Gresser, A. S. Tracey, and J. H. McNeill, The distribution and half-life for retention of vanadium in the organs of normal and diabetic rats orally fed vanadium(IV) and vanadium(V), Biol. Trace Element Res. 30, 119–124 (1991).

    CAS  Google Scholar 

  8. A. K. Srivastava, Anti-diabetic and toxic effects of vanadium compounds, Mol. Cell. Biochem. 206, 177–182 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. G. R. Willsky, A. B. Goldfine, P. J. Kostyniak, et al., Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovanadium(IV), J. Inorg. Biochem. 85, 33–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. H. McNeill, H. L. M. Delgatty, and M. L. Battell, Insulinlike effects of sodium selenate in streptozotocin-induced diabetic rats, Diabetes 40, 1675–1678 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. F. Bosch, J. E. Rodriguez-Gil, M. Hatzoglou, A. M. Gomez-Foix, and R. W. Hanson, Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression, J. Biol. Chem. 267, 2888–2893 (1992).

    PubMed  CAS  Google Scholar 

  12. R. A. Anderson, Chromium in the prevention and control of diabetes. Diabetes Metab. 26, 22–27 (2000).

    PubMed  CAS  Google Scholar 

  13. F. Saker, J. Ybarra, P. Leahy, R. W. Hanson, S. C. Kalhan, and F. Ismail-Beigi, Glycemialowering effect of cobalt chloride in the diabetic rat: role of decreased gluconeogenesis. Am. J. Physiol. 274, E984-E991 (1998).

    PubMed  CAS  Google Scholar 

  14. C. Fillat, J. E. Rodriguez-Gil, and J. J. Guinovart, Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes, Biochem. J. 282, 659–663 (1992).

    PubMed  CAS  Google Scholar 

  15. Y. Goto, K. Kida, M. Ikeuchi, Y. Kaino, and H. Matsuda, Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes, Biochem. Pharmacol. 44, 174–177 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. J. Li, G. Elberg, D. Gefel, and Y. Shechter, Permolybdate and pertungstate. Potent stimulators of insulin effects in rat adipocytes: mechanism of action. Biochemistry 34, 6218–6225 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. A. Barberà, R. R. Gomis, N. Prats, et al., Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: a long-term study, Diabetologia 44, 507–513 (2001).

    Article  PubMed  Google Scholar 

  18. M. C. Muñoz, A. Barberà, J. Dominguez, J. Fernandez-Alvarez, R. Gomis, and J. J. Guinovart, Effects of tungstate, a new potential oral antidiabetic agent, in Zucker diabetic fatty rats, Diabetes 50, 131–138 (2001).

    Article  PubMed  Google Scholar 

  19. K. Nomiya, H. Torii, T. Hasegawa, et al., Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homo-polyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose levels of STZ mice, J. Inorg. Biochem. 86, 657–667 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. L. Rossetti, A. Giaccari, E. Klein-Robbenhaar, and L. R. Vogel, Insulinomimetic properties of trace elements and characterization of their in vivo mode of action. Diabetes 39, 1243–1250 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. C. E. Heyliger, A. G. Tahiliani, and J. H. McNeill, Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats, Science 227, 1474–1477 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. J. Meyerovitch, Z. Farfel, J. Sack, and Y. Shechter, Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats, J. Biol. Chem. 262, 6658–6662 (1987).

    PubMed  CAS  Google Scholar 

  23. O. Blondel, D. Bailbe, and B. Portha, In vivo insulin resistance in streptozotocin-diabetic rats—evidence for reversal following oral vanadate treatment, Diabetologia 32, 185–190 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. S. M. Brichard, W. Okitolonda, and J. C. Henquin, Long term improvement of glucose homeostasis by vanadate treatment in diabetic rats, Endocrinology 123, 2048–2053 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. Y. L. Wang and B. Yu, Effect of peroxovanadate compound on phenylalanine hydroxylase gene expresion, Biol. Trace Element Res. 74, 237–244 (2000).

    Article  CAS  Google Scholar 

  26. W. Ding, T. Hasegawa, H. Hosaka, D. Peng, K. Takahashi, and Y. Seko, Effect of longterm treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus, Biol. Trace Element Res. 80, 159–174 (2001).

    Article  CAS  Google Scholar 

  27. J. L. Domingo, M. Gomez, D. J. Sanchez, J. M. Llobet, and C. L. Keen, Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation, Mol. Cell. Biochem. 153, 233–240 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. J. L. Domingo, Vanadium: a review of the reproductive and developmental toxicity, Reprod. Toxicol. 10, 175–182 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. J. L. Domingo, Vanadium and diabetes. What about vanadium toxicity? Mol. Cell. Biochem. 203, 185–187 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Llobet and J. L. Domingo, Acute toxicity of vanadium compounds in rats and mice, Toxicol. Lett. 23, 227–231 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. G. Kazantzis, Tungsten, in Handbook on the Toxicology of Metals, L. Friberg, G. F. Nordberg, and V. B. Vouk, eds., Elsevier, Amsterdam, pp. 637–646 (1979).

    Google Scholar 

  32. J. L. Domingo, M. Gomez, J. M. Llobet, J. Corbella, and C. L. Keen, Oral vanadium administration to streptozotocin-diabetic rats has marked negative side-effects which are independent on the form of vanadium used, Toxicology 66, 279–287 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. J. L. Domingo, M. Gomez, J. M. Llobet, J. Corbella, and C. L. Keen, Improvement of glucose homeostasis by oral vanadyl or vanadate treatment in diabetic rats is accompanied by negative side effects, Pharmacol. Toxicol. 68, 249–253 (1991).

    PubMed  CAS  Google Scholar 

  34. S. Dai and J. H. McNeill, One-year treatment of non-diabetic and streptozotocin-diabetic rats with vanadyl sulfate did notalter blood pressure or hematological indices, Pharmacol. Toxicol. 74, 110–115 (1994).

    PubMed  CAS  Google Scholar 

  35. G. R. Hogan, Vanadium-induced leukocytosis, Bull. Environ. Contam. Toxicol. 64, 1–6 (2000).

    Article  Google Scholar 

  36. E. Sabbioni, G. Pozzi, A. Pintar, L. Casella, and S. Garattini, Cellular retention, cytotoxicity and morphological transformation by vanadium (IV) and vanadium(V) in BALB/3T3 cell lines, Carcinogenesis 12, 47–52 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. E. Sabbioni, G. Pozzi, S. Devos, A. Pintar, L. Casella, and M. Fischbach, The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV), Carcinogenesis 14, 2565–2568 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. R. Ciranni, M. Antonetti, and L. Migliore, Vanadium salts induce cytogenetic effects in in vivo treated mice, Mutat. Res. 343, 53–60 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. A. M. Cortizo, V. Salice, C. M. Vescina, and S. B. Etcheverry, Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblasts, Biometals 10, 127–133 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. A. Leonard and G. B. Gerber, Mutagenicity, carcinogenicity and teratogenicity of vanadium compounds, Mutat. Res. 317, 81–88 (1994).

    PubMed  CAS  Google Scholar 

  41. B. Z. Zhong, Z. W. Gu, W. E. Wallace, W. Z. Zhong, and T. Ong, Genotoxicity of vanadium pentoxide in Chinese hamster V79 cells, Mutat. Res. 321, 35–42 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. M. Altamirano-Lozano, M. Valverde, L. Alvarez-Barrera, B. Molina, and E. Rojas, Genotoxic studies of vanadium pentoxide (V2O5) in male mice. II. Effects in several mouse tissues, Teratogen. Carcinogen. Mutagen. 19, 243–255 (1999).

    Article  CAS  Google Scholar 

  43. M. Altamirano-Lozano, L. Alvarez-Barrera, and E. Roldan-Reyes, Cytogenetic and teratogenic effects of vanadium pentoxide in mice, Med. Sci. Res. 21, 711–713 (1993).

    CAS  Google Scholar 

  44. K. H. Thompson, Vanadium and diabetes, Biofactors 10, 43–51 (1999).

    PubMed  CAS  Google Scholar 

  45. K. H. Thompson, M. Battell, and J. H. McNeill, Toxicology of vanadium in mammals, in Vanadium in the Environment, J. O. Nriagu, ed., Wiley, New York, pp. 21–37 (1998).

    Google Scholar 

  46. H. J. Thompson, N. D. Chasteen, and L. D. Meeker, Dietary vanadyl(IV) sulfate inhibits chemically-indcued mammary carcinogenesis, Carcinogenesis 5, 849–851 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. D. J. Sanchez, A. Ortega, J. L. Domingo, and J. Corbella, Developmental toxicity evaluation of orthovanadate in the mouse, Biol. Trace Element Res. 30, 219–226 (1991).

    Article  CAS  Google Scholar 

  48. J. L. Paternain, J. L. Domingo, M. Gomez, A. Ortega, and J. Corbella, Developmental toxicity of vanadium in mice after oral administration, J. Appl. Toxicol. 10, 181–186 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. J. L. Paternain, J. L. Domingo, J. M. Llobet, and J. Corbella, Embryotoxic effects of sodium metavanadate administered to rats during organogenesis, Rev. Esp. Fisiol. 43, 223–228 (1987).

    PubMed  CAS  Google Scholar 

  50. J. L. Domingo, J. L. Paternain, J. M. Llobet, and J. Corbella, Effects of vanadate on reproduction, gestation, parturition and lactation in rats upon oral administration. Life Sci. 39, 819–824 (1986).

    Article  PubMed  CAS  Google Scholar 

  51. S. Ganguli, D. J. Reuland, L. A. Franklin, and M. Tucker, Effect of vanadate on reproductive efficiency in normal and streptozotocin-treated diabetic rats, Metabolism 43, 1384–1388 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. S. Ganguli, D. J. Reuland, L. A. Franklin, D. D. Deakins, W. J. Johnson, and A. Pasha, Effects of maternal vanadate treatment on fetal development, Life Sci. 55, 1267–1276 (1994).

    Article  PubMed  CAS  Google Scholar 

  53. W. M. Bracken and R. P. Sharma, Cytotoxicity-related alterations of selected cellular functions after in vitro vanadate exposure, Biochem. Pharmacol. 34, 2465–2470 (1985).

    Article  PubMed  CAS  Google Scholar 

  54. R. B. Nechay, L. B. Nanninga, and P. S. E. Nechay, Vanadyl(IV) and vanadate(V) binding to selected endogenous phosphate carboxyl and amino ligands: calculations of cellular vanadium species distribution, Arch. Biochem. Biophys. 251, 128–138 (1986).

    Article  PubMed  CAS  Google Scholar 

  55. M. Younes and O. Strubelt, Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxidation, Toxicology 66, 63–74 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. J. Z. Byczkowski and A. P. Kulkarni, Vanadium redox cycling, lipid peroxidation and co-oxygenation of benzo[a]pyrene-7,8-dyhydrodiol, Biochim. Biophys. Acta 1125, 134–141 (1992).

    PubMed  CAS  Google Scholar 

  57. M. H. Oster, J. M. Llobet, J. L. Domingo, J. B. German, and C. L. Keen, Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects, Toxicology 83, 115–130 (1993).

    Article  PubMed  CAS  Google Scholar 

  58. A. M. Cortizo, L. Bruzzone, S. Molinuevo, and S. B. Etcheverry, A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma in cells, Toxicology 147, 89–99 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. A. M. Cortizo, M. Caporossi, G. Lettieri, and S. B. Etcheverry, Vanadate-induced nitric oxide production: role in osteoblast growth and differentiation, Eur. J. Pharmacol. 400, 279–285 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. X. Shi, H. Jiang, Y. Mao, J. Ye, and U. Saffiotti, Vanadium(IV)-mediated free radical generation and related 2′-deoxyguanosine hydroxylation and DNA damage, Toxicology 106, 27–38 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. W. M. Bracken, R. P. Sharma, and Y. Y. Elsner, Vanadium accumulation and subcellular distribution in relation to vanadate induced cytotoxicity in vitro, Cell. Biol. Toxicol. 1, 259–268 (1985).

    Article  PubMed  CAS  Google Scholar 

  62. J. Owusu-Yaw, M. D. Cohen, S. Y. Fernando, and C. I. Wei, An assessment of the genotoxicity of vanadium, Toxicol. Lett. 50, 327–336 (1990).

    Article  PubMed  CAS  Google Scholar 

  63. A. Galli, R. Vellosi, R. Fiorio, et al., Genotoxicity of vanadium compounds in yeast and cultured mammalian cells, Teratogen. Carcinogen. Mutagen. 11, 175–183 (1991).

    Article  CAS  Google Scholar 

  64. G. Daum, B. Levkau, N. L. Chamberlain, Y. Wang, and A. W. Clowes, The mitogen-activated protein kinase pathway contributes to vanadate toxicity in vascular smooth muscle cells, Mol. Cell. Biochem. 183, 97–103 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. N. Cohen, M. Halberstam, P. Shlimovich, C. J. Chang, H. Shamoon, and L. Rosetti, Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus, J. Clin. Invest. 95, 2501–2509 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti, and C. R. Kahn, Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus: in vivo and in vitro studies, J. Clin. Endocrinol. Metabol. 80, 3311–3320 (1995).

    Article  CAS  Google Scholar 

  67. G. Boden, X. Chen, J. Ruiz, G. D. V. van Rossum, and S. Turco, Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus, Metabolism 45, 1130–1135 (1996).

    Article  PubMed  CAS  Google Scholar 

  68. M. Halberstam, N. Cohen, P. Shlimovich, L. Rosetti, and H. Shamoon, Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects, Diabetes 45, 659–666 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. A. B. Goldfine, M. E. Patti, L. Zuberi, et al., Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies, Metabolism 49, 400–410 (2000).

    Article  PubMed  CAS  Google Scholar 

  70. A. Barberà, J. E. Rodriguez-Gil, and J. J. Guinovart, Insulin-like actions of tungstate in diabetic rats, J. Biol. Chem. 269, 20,047–20,053 (1994).

    Google Scholar 

  71. A. Barberà, J. Fernandez-Alvarez, A. Truc, R. Gomis, and J. J. Guinovart, Effects of tungstate in neonatally streptozotocin-induced diabetic rats: mechanism leading to normalization of glycaemia, Diabetologia 40, 143–149 (1997).

    Article  PubMed  Google Scholar 

  72. S. Le Lamer, P. Poucheret, G. Cros, R. K. de Richter, P. A. Bonnet, and F. Bressolle, Pharmacokinetics of sodium tungstate in rat and dog: a population approach, J. Pharmacol. Exp. Ther. 294, 714–721 (2000).

    PubMed  Google Scholar 

  73. M. T. Karantassis, Toxicity of tungsten and molybdenum compounds, Ann. Med. Legal 5, 44–50 (1924).

    Google Scholar 

  74. F. W. Kinard, and J. van de Erve, The toxicity of orally-ingested tungsten compounds in the rat, J. Pharmacol. Exp. Ther. 72, 196–201 (1941).

    CAS  Google Scholar 

  75. P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. I. Experiments in mice and rats, Arch. Int. Pharmacodyn. 154, 243–249 (1965).

    Google Scholar 

  76. P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. II. Experiments in rabbits, Arch. Int. Pharmacodyn. 157, 109–114 (1965).

    Google Scholar 

  77. P. H. Chanh, M. C. Azum-Gelade, and S. Chanvattey, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. III. Experiments in cats, Agressologie 8, 51–60 (1967).

    Google Scholar 

  78. F. Caujolle and P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavandate. IV. Experiments in dogs, Agressologie 8, 265–273 (1967).

    PubMed  CAS  Google Scholar 

  79. P. H. Chanh and S. Chanvattey, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. V. Experiments in pigeons, chicks and rats, Agressologie 8, 433–439 (1967).

    Google Scholar 

  80. H. A. Schroeder and M. Mitchener, Life-term studies in rats: effects of aluminum, barium, beryllium, and tungsten, J. Nutr. 105, 421–427 (1975).

    PubMed  CAS  Google Scholar 

  81. V. G. Nadeenko, V. G. Lenchenko, S. B. Genkina, and T. A. Arkhipenko, The influence of tungsten, molybdenum, copper, and arsenic on the intrauterine development of the fetus, Farmakol. Toksikol. 41, 620–623 (1978).

    PubMed  CAS  Google Scholar 

  82. M. Wide, Effect of short-term exposure to five industrial metals on the embryonic and fetal development of the mouse, Environ. Res. 33, 47–53 (1984).

    Article  PubMed  CAS  Google Scholar 

  83. M. Wide, B. R. G. Danielsson, and L. Dencker, Distribution of tungstate in pregnant mice and effects on embryonic cells in vitro, Environ. Res. 40, 487–498 (1986).

    Article  PubMed  CAS  Google Scholar 

  84. J. Fernandez-Alvarez, J. Zapatero, and C. Piñol, Acute oral and intravenous toxicity of sodium tungstate: a potential agent to treat diabetes mellitus, Abstracts of the Symposium on The Insulinomimetic Effects of Metal Ions: Potential Therapy for Diabetes Mellitus, Sitges, Spain, p. 24 (2000).

  85. J. Fernandez-Alvarez, J. Zapatero, and C. Piñol, Subacute and subchronic sodium tungstate toxicity studies. Abstracts of the Symposium on The Insulinomimetic Effects of Metal Ions: Potential Therapy for Diabetes Mellitus, Sitges, Spain, p. 25 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingo, J.L. Vanadium and tungsten derivatives as antidiabetic agents. Biol Trace Elem Res 88, 97–112 (2002). https://doi.org/10.1385/BTER:88:2:097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:88:2:097

Index Entries

Navigation