Skip to main content
Log in

Membrane toxicity accounts for apoptosis induced by realgar nanoparticles in promyelocytic leukemia HL-60 cells

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that realgar nanoparticles might provide a less toxic agent for antineoplasia by suppressing angiogenesis. Here, we addressed the question of whether the size effects on apoptosis induction mainly contribute to the comparably higher concentration of easily soluble As2O3 present in realgar nanoparticles. Results revealed that treatment with realgar nanoparticles resulted in considerably low cell viability and produced characteristic apoptotic events in HL-60 cells, including morphological changes, DNA ladder formation, and increased number of cells with sub-G1-phase, whereas raw realgar particles with the same As2O3 concentration failed to induce apoptosis. On the other hand, the effects of realgar nanoparticles and raw realgar particles on cell membrane were examined. Realgar nanoparticles had acute toxicity to cell membrane, potentiating lipid peroxidation, increasing lactate dehydrogenase (LDH) release, and reducing membrane fluidity, whereas raw realgar particles had little effect on cell membrane besides a similar reduction of membrane fluidity. These results suggest that the promotion of lipid peroxidation and membrane permeability might play an important role in the process of apoptotic induction by realgar nanoparticles. However, raw realgar particles are not sufficient to elicit apoptosis, although they can reduce membrane fluidity in HL-60 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Cai, Y. Yu, Y. Huang, et al., Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells, Leukemia 17(7), 1333–1337 (2003).

    Article  CAS  Google Scholar 

  2. M. Lu, J. Levin, E. Sulpice, et al., Effect of arsenic trioxide on viability, proliferation, and apoptosis in human megakaryocytic leukemia cell lines, Exp. Hematol. 27(5), 845–852 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. D. P. Lu, J. Y. Qiu, B. Jiang, et al., Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report, Blood 99(9), 3136–3143 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. H. Y. Hao, Z. P. Teng, and D. P. Lu, Study on the role of PML-RARalpha and RARalpha fusion proteins in NB4 cell apoptosis induced by arsenic trisulfide, Zhongguo Shi Yan Xue Ye Xue Za Zhi 10(2), 108–111 (2002) (in Chinese).

    PubMed  Google Scholar 

  5. Y. H. Du and P. C. Ho, Arsenic compounds induce cytotoxicity and apoptosis in cisplatin-sentitive and-resistant gynecological cancer cell lines, Cancer Chemother. Pharmacol. 47(6), 481–490 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. W. H. Park, Y. H. Choi, C. W. Jung, et al., Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis, Biochem. Biophys. Res. Commun. 300(1), 230–235 (2003).

    Article  Google Scholar 

  7. P. Y. Siu Katy, Y. W. Chan Judy, and K. P. Fung, Effect of arsenic trioxide on human hepatocellular carcinoma HepG2 cells: Inhibition of proliferation and induction of apoptosis, Life Sci. 71(3), 275–285 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. K. Salnikow and M. D. Cohen, Backing into cancer: effects of arsenic on cell differentiation, Toxicol. Sci. 65(2), 161–163 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. D. P. Lu and Q. Wang, Current study of APL treatment in China, Int. J. Hematol. 76 (Suppl. 1), 316–318 (2002).

    Article  PubMed  Google Scholar 

  10. F. R. Wang, Pharmacolinetic study of oral tetra-arsenic tetra-sulfide complex and with excipient, PhD thesis Peking University, Beijing (2001).

    Google Scholar 

  11. V. Labhasetwar, Nanoparticles for drug delivery, Pharm. News. 4, 28–31 (1997).

    CAS  Google Scholar 

  12. S. Shinji, S. Norio, K. Hiroshi, et al., Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches, Int. J. Pharm. 149(1), 93–106 (1997).

    Article  Google Scholar 

  13. D. F. Nixon, C. Hioe, and P. D. Chen, Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity, Vaccine 14, 1523–1530 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. J. Molpeceres, M. Guzman, and M. R. Aberturas, Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement, J. Pharm. Sci. 85, 206–213 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. S. Mitra, U. Gaur, P. C. Ghosh, et al., Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release 74(1–3), 317–323 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. S. Y. Kim, J. C. Ha, and Y. M. Lee, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. II. Thermoresponsive drug release behaviors, J. Control. Release 65, 345–358 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Zhang, N. Kohler, and M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23(7), 1553–1561 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. M. P. Desai, V. Labhasetwar, and E. Walter, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharm. Res. 14, 1568–1573 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Deng, H. B. Xu, K. X. Huang, et al., Size effects of realgar particles on apoptosis in human umbilical vein endothelia cell line: ECV304, Pharm. Res. 44, 513–518 (2001).

    Article  CAS  Google Scholar 

  20. H. Tada, O. Shiho, K. Kuroshima, et al., An improved colorimetric assay for interleukin 2, J. Immunol. Methods 93(2), 157–165 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. X. S. Liu, C. B. Kim, J. Yang, et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell 86, 147–157 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. W. H. Matsui, D. E. Gladstone, M. S. Vala, et al., The role growth factors in the activity of pharmacological differentiation agents, Cell Growth Differ. 13, 275–283 (2002).

    PubMed  CAS  Google Scholar 

  23. C. F. Yang, H. M. Shen, Y. Shen, et al., Calcium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells) Environ. Health Perspect. 105, 712–716 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. I. Nathan, I. Ben-Valid, R. Henzel, et al., Alterations in membrane lipid dynamics of leukemic cells undergoing growth arrest and differentiation: dependenncy on the inducting agent, Exp. Cell Res. 239, 442–446 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. A. A. Welder, R. Grant, J. Bradlaw, et al., A primary culture system of adult rat heart cells for the study of toxicologic agents, In Vitro Cell Dev. Biol. 27A(12), 921–926 (1991).

    PubMed  CAS  Google Scholar 

  26. S. Sen and D. Incalei, Apoptosis: biochemical events and relevance to cancer chemotherapy, FEBS Lett. 307, 122–127 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. R. J. Bold, P. M. Termuhlen, and D. J. McConkey, Apoptosis, cancer and cancer therapy, Surg. Oncol. 6(3), 133–142 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. N. Larochette, D. Decaudin, E. Jacotot, et al., Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore, Exp. Cell Res. 249, 413–421 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Nakagawa, Y. Akao, H. Morikawa, et al., Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines, Life Sci. 70, 2253–2269 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. T. Slater, B. Sawyer, and U. Strauli, Studies on succinate-tetrazolium reductase system. III. Points of coupling of four different tetrazolium salts, Biochim. Biophys. Acta 77, 383–393 (1963).

    Article  PubMed  CAS  Google Scholar 

  31. M. Rizzardini, M. Lupi, S. Bernasconi, et al., Mitochondrial dysfunction and death in motor neurons exposed, to the glutathione-depleting agent ethacrynic acid, J. Neurol. Sci. 207, 51–58 (2003).

    Article  CAS  Google Scholar 

  32. T. Bohler, J. Waiser, H. Hepburn, et al., TNF-alpha and IL-lalpha induce apoptosis in subconfluent rat mesangial cells. Evidence for the involvement of hydrogen peroxide and lipid peroxidation as second messengers, Cytokine 12(7), 986–991 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. X. Y. Yu, N. Takahashi, T. L. Croxton, et al., Modulation of bronchial epithelial cell barrier function by in vitro ozone exposure, Environ. Health Perspect. 102(12), 1068–1072 (1994).

    Article  Google Scholar 

  34. L. Schiaffonati and L. Tiberio, Gene expression, in liver after toxic injury: analysis of heat shock response and oxidative stress-inducible genes, Liver 17(4), 183–191 (1997).

    PubMed  CAS  Google Scholar 

  35. O. Tomáš, A. Evzen, O. Veronika, et al., Effect of aminophospholip glycation on order parameter and hydration of phospholipid bilayer, Biophys. Chem. 80(3), 165–177 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, HQ., Gan, L., Yang, XL. et al. Membrane toxicity accounts for apoptosis induced by realgar nanoparticles in promyelocytic leukemia HL-60 cells. Biol Trace Elem Res 103, 117–132 (2005). https://doi.org/10.1385/BTER:103:2:117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:2:117

Index Entries

Navigation