Skip to main content

Analysis of Thyroid Hormone-Dependent Genes in the Brain by In Situ Hybridization

  • Protocol
Thyroid Hormone Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 202))

Abstract

Among the most dramatic actions of thyroid hormone are those exerted on brain development and function. In the adult human brain, a deficiency or excess of thyroid hormone may lead to various psychiatric manifestations, but it is during development when thyroid hormone exerts its most varied and critical actions on neural tissue. In humans, a deficiency of thyroid hormone taking place during a critical period of development may lead to severe mental retardation and also to neurological defects (1). This critical period may extend from the start of the second trimester of pregnancy to the first few months after birth. During this period, the absence of thyroid hormone, if not corrected by early postnatal treatment, leads to irreversible damage with mental retardation. While in utero, the fetal brain is protected from thyroid deficiency by the maternal hormone. Severe thyroid hormone deficiency in the pregnant woman, especially if combined with fetal deficiency, leads to severe neurological deficits in the child that are irreversible even with early postnatal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porterfield, S. P. and Hendrich, C. E. (1993) The role of thyroid hormones in prenatal and neonatal neurological development-current perspectives. Endocr. Rev. 14, 94–106.

    PubMed  CAS  Google Scholar 

  2. Legrand, J. (1984) Effects of thyroid hormones on central nervous system, in Neurobehavioral Teratology (Yanai, J., ed.), Elsevier Science Publishers, Amsterdam, pp. 331–363.

    Google Scholar 

  3. Pérez-Castillo, A., Bernal, J., Ferreiro, B., and Pans, T. (1985) The early ontogenesis of thyroid hormone receptor in the rat fetus. Endocrinology 117, 2457–2461.

    Article  PubMed  Google Scholar 

  4. Bradley, D. J., Towle, H. C., and Young, W. S. (1992) Spatial and temporal expression of α-and β-thyroid hormone receptor mRNAs, including the β2-sub-type, in the developing mammalian nervous system. J. Neurosci. 12, 2288–2302.

    PubMed  CAS  Google Scholar 

  5. Bernal, J. and Pekonen, F. (1984) Ontogenesis of the nuclear 3,5,3′-triiodothyro-nine receptor in the human fetal brain. Endocrinology 114, 677–679.

    Article  PubMed  CAS  Google Scholar 

  6. Bernal, J. and Guadaño-Ferraz, A. (1998) Thyroid hormone and the development of the brain. Curr. Op. Endocrinol. Diabetes 5, 296–302.

    Article  CAS  Google Scholar 

  7. Rogister, B., Ben-Hur, T., and Dubois-Dalcq, M. (1999) From neural stem cells to myelinating oligodendrocytes. Mol. Cell. Neurosci. 14, 287–300.

    Article  PubMed  CAS  Google Scholar 

  8. Sutcliffe, J. G. (1988) The genes for myelin revisited. Trends Genet. 4, 211–213.

    Article  PubMed  CAS  Google Scholar 

  9. Vega-Núñez, E., Menéndez-Hurtado, A., Garesse, R., Santos, A., and PerezCastillo, A. (1995) Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning. J. Clin. Invest. 96, 893–899.

    Article  PubMed  Google Scholar 

  10. Alvarez-Dolado, M., Gonzalez-Moreno, M., Valencia, A., Zenke, M., Bernal, J., and Muñoz, A. (1999a) Identification of a mammalian homologue of the fungal Tom70 mitochondrial precursor protein import receptor as a thyroid hormone-regulated gene in specific brain regions. J. Neurochem. 73, 2240–2249.

    Article  PubMed  CAS  Google Scholar 

  11. Iglesias, T., CaubÍn, J., Zaballos, A., Bernal, J., and Muñoz, A. (1995) Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis. Biochem. Biophys. Res. Comm. 210, 995–1000.

    Article  PubMed  CAS  Google Scholar 

  12. Alvarez-Dolado, M., Iglesias, T., RodrÍguez-Peña, A., Bernal, J., and Muñoz, A. (1994) Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Mol. Brain Res. 27, 249–257.

    Article  PubMed  CAS  Google Scholar 

  13. Neveu, I. and Arenas, E. (1996) Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats. J. Cell Biol. 133, 631–646.

    Article  PubMed  CAS  Google Scholar 

  14. Aniello, F., Couchie, D., Gripois, D., and Nunez, J. (1991) Regulation of five tubulin isotypes by thyroid hormone during brain development. J. Neurochem. 57, 1781–1786.

    Article  PubMed  CAS  Google Scholar 

  15. Aniello, F., Couchie, D., Bridoux, A. M., Gripois, D., and Nunez, J. (1991) Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc. Natl. Acad. Sci. USA 88, 4035–039.

    Article  PubMed  CAS  Google Scholar 

  16. Ghorbel, M. T., Seugnet, I., Hadj-Sahraoui, N., Topilko, P., Levi, G., and Demeneix, B. (1999) Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. Oncogene 18, 917–924.

    Article  PubMed  CAS  Google Scholar 

  17. Koibuchi, N. and Chin, W. W. (1998) RORα gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 139, 2335–2341.

    Article  PubMed  CAS  Google Scholar 

  18. Denver, R. J., Ouellet, L., Furling, D., Kobayashi, A., Fujii-Kuriyama, Y., and Puymirat, J. (1999) Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J. Biol. Chem. 274, 23,128–23,134.

    Article  PubMed  CAS  Google Scholar 

  19. Cuadrado, A., Bernal, J., and Muñoz, A. (1999) Identification of the mammalian homolog of the splicing regulator Suppressor-of-white-apricot as a thyroid hormone regulated gene. Mol. Brain. Res. 71, 332–340.

    Article  PubMed  CAS  Google Scholar 

  20. Alvarez-Dolado, M., Gonzalez-Sancho, J. M., Bernal, J., and Muñoz, A. (1998) Developmental expression of tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84, 309–322.

    Article  PubMed  CAS  Google Scholar 

  21. Alvarez-Dolado, M., Ruiz, M., del Rio, J. A., et al. (1999b) Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19, 6979–6973.

    PubMed  CAS  Google Scholar 

  22. Alvarez-Dolado, M., Cuadrado, A., Navarro-Yubero, C., et al. (2000) Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol. Cell. Neurobiol. 16, 499–514.

    Article  CAS  Google Scholar 

  23. Iñiguez, M. A., De Lecea, L., Guadaño-Ferraz, A., et al. (1996) Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 137, 1032–1041.

    Article  PubMed  Google Scholar 

  24. Krebs, J. and Honegger, P. (1996) Calmodulin kinase IV: expression and function during rat brain development. Biochim. Biophys. Acta 1313, 217–222.

    Article  PubMed  Google Scholar 

  25. GarcÍa-Fernández, L. F., Urade, Y., Hayaishi, O., Bernal, J., and Muñoz, A. (1998) Identification of a thyroid hormone response element in the promoter region of the rat lipocalin-type prostaglandin D synthase (beta-trace) gene. Mol. Brain Res. 55, 321–330.

    Article  PubMed  Google Scholar 

  26. Falk, J. D., Vargiu, P., Foye, P. E., et al. (1999) Rhes: a striatal-specific Ras homolog related to Dexras1. J. Neurosci. Res. 57, 782–788.

    Article  PubMed  CAS  Google Scholar 

  27. Valentino, K. L., Eberwine, J. H., and Barchas, J. D. (1987) In Situ Hybridization: Applications to Neurobiology, Oxford University Press, New York.

    Google Scholar 

  28. Wisden, W. and Morris, B. J. (1994) In Situ Hybridization Protocols for the Brain, Academic Press, London.

    Google Scholar 

  29. Polak, J. M. and McGee, J. O. D. (1998) In Situ Hybridization: Principles and Practice, Oxford University Press, Oxford.

    Google Scholar 

  30. Obregón, M. J., Ruiz de Oña, C., Calvo, R., Escobar del Rey, F., and Morreale de Escobar, G. (1991) Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate. Endocrinology 129, 2663–2673.

    Article  PubMed  Google Scholar 

  31. Guadaño-Ferraz, A., Escámez, M. J., Morte, B., Vargiu, P., and Bernal, J. (1997) Transcriptional induction of RC3/neurogranin by thyroid hormone: differential neuronal sensitivity is not correlated with thyroid hormone receptor distribution in the brain. Mol. Brain Res. 49, 37–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Bernal, J., Guadaño-Ferraz, A. (2002). Analysis of Thyroid Hormone-Dependent Genes in the Brain by In Situ Hybridization. In: Baniahmad, A. (eds) Thyroid Hormone Receptors. Methods in Molecular Biology, vol 202. Humana Press. https://doi.org/10.1385/1-59259-174-4:71

Download citation

  • DOI: https://doi.org/10.1385/1-59259-174-4:71

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-995-7

  • Online ISBN: 978-1-59259-174-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics