Skip to main content
Log in

Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A readily obtainable in vitro paradigm of the blood-brain barrier (BBB) would offer considerable benefits. Toward this end, in this study, we describe a novel method for purifying murine brain microvascular endothelial cells (BMEC) for culture. The method uses limited collagenase-dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, microvascular fragments by magnetic beads coated with antibody to platelet-endothelial cell adhesion molecule-1. When plated onto collagen IV-coated surfaces, these fragments elaborated confluent monolayers of BMEC that expressed, as judged by immunocytochemistry, the adherens junction-associated proteins, VE-cadherin and β-catenin, as well as the tight junction (TJ)-associated proteins, claudin-5, occludin, and zonula occludin-1 (ZO-1), in concentrated fashion along intercellular borders. In contrast, cultures of an immortalized and transformed line of murine brain capillary-derived endothelial cells, bEND.3, displayed diffuse cytoplasmic localization of occludin and ZO-1. This difference in occludin and ZO-1 staining between the two endothelial cell types was also reflected in the extent of association of these proteins with the detergent-resistant cytoskeletal framework (CSK). Although both occludin and ZO-1 largely partitioned with the CSK fraction in BMEC, they were found predominantly in the soluble fraction of bEND.3 cells, and claudin-5 was found associated equally with both fractions in BMEC and bEND.3 cells. Moreover, detergent-extracted cultures of the BMEC retained pronounced immunostaining of occludin and ZO-1, but not claudin-5, along intercellular borders. Because both occludin and ZO-1 are thought to be functionally coupled to the detergent-resistant CSK and high expression of TJs is considered a seminal characteristic of the BBB, these results impart that this method of purifying murine BMEC provides a suitable platform to investigate BBB properties in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J.; Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200:629–638; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Allt, G.; Lawrenson, J. G. Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, L. M.; Hagberg, L.; Fuchs, D.; Svennerholm, B.; Gisslen, M. Increased blood-brain barrier permeability in neuro-asymptomatic HIV-1-infected individuals—correlation with cerebrospinal fluid RNA and neopterin levels. J. Neurovirol. 7:542–547; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic, A. V.; Zochowski, M. R.; Morgan, F.; Pachter, J. S. Qualitative and quantitative analysis of monocyte transendothelial migration by confocal microscopy and three-dimensional image reconstruction. In Vitro Cell. Dev. Biol. 37A:111–120; 2001.

    Article  Google Scholar 

  • Bernardini, G.; Ribatti, D.; Spinetti, G.; Morbidelli, L.; Ziche, M.; Santoni, A.; Capograssi, M. C.; Napolitano, M. Analysis of the role of chemokines in angiogenesis. J. Immunol. Methods 273:83–101; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Brahic, M. Theiler's virus infection of the mouse, or: of the importance of studying mouse models. Virology 301:1–5; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bussolino, F.; Mitola, S.; Serini, G.; Barillari, G.; Ensoli, B. Interactions between endothelial cells and HIV-1. Int. J. Biochem. Cell Biol. 33:371–390; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P.; Collen, D. Molecular analysis of blood vessel formation and disease. Am. J. Physiol. 273:H2091-H2104; 1997.

    PubMed  CAS  Google Scholar 

  • Chen, M. L.; Pothoulakis, C.; LaMont, J. T. Protein kinase C signaling regulates 20-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin. A. J. Biol. Chem. 277:4247–4254; 2002.

    Article  CAS  Google Scholar 

  • Connolly, J. O.; Soga, N.; Guo, X. L.; Alvarez, U.; Hruska, K. A. Rac is essential in the transformation of endothelial cells by polyoma middle. T. Cell Adhes. Commun. 7:409–422; 2000.

    Article  CAS  Google Scholar 

  • Dong, Q. C.; Bernasconi, S.; Lostaglio, S., et al. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterio. Thromb. Vasc. Biol. 17:1599–1604; 1997.

    CAS  Google Scholar 

  • Dzenko, K. A.; Andjelkovic, A. V., Kuziel, W. A.; Pachter, J. S. The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J. Neurosci. 21:9214–9223; 2001.

    PubMed  CAS  Google Scholar 

  • Fanning, A. S.; Jameson, B. J.; Jesaitis, L. A.; Anderson, J. M. The tight junction protein ZO-1 establishes a link between the trassmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273:29745–29753; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley, J. K. Pathogenesis of Semliki Forest virus encephalitis. J. Neurovirol. 8:66–74; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Fazekas, G.; Tabira, T. What transgenic and knockout mouse animals teach us about experimental autoimmune encephalomyelitis. Rev. Immunogenet. 2:115–132; 2000.

    PubMed  CAS  Google Scholar 

  • Fenstermacher, J. D.; Nagaraja, T.; Davies, K. R. Overview of the structure and function of the blood-brain barrier in vivo. In: Kobiler, S.; Lustig, S.; Shapira, S., ed. Blood-brain barrier: drug delivery and brain pathology. New York: Kluwer Academic-Plenum Publishers; 2000:1–7.

    Google Scholar 

  • Furuse, M.; Hirasi, M.; Itoh, A.; Nagafuchi, S.; Yonemura, S.; Tsukita, S.; Tsukita, S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777–1788; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gold, R.; Hartung, H. P.; Toyka, K. V. Animal models for autoimmune demyelinating disorders of the nervous system. Mol. Med. Today 6:88–91; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gumbleton, M.; Audus, K. L. Progress and limitations in the use of in vitro cell cultures toserve as a permeability screen for the blood-brain barrier. J. Pharma. Sci. 90:1671–1698; 2001.

    Google Scholar 

  • Han, X.; Fink, M. P.; Delude, R. L. Proinflammatory cytokines cause NO*-dependent and-independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19:229–237; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P. H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 23:166–180; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Helmke, B. P.; Thakker, D. B.; Goldman, R. D.; Davies, P. F. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80:184–194; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, K.-I.; Tetsuka, K.; Nagase, K.; Tomi, M.; Saeki, S.; Ohtsuki, S.; Terasaki, T. Conditionally immortalized brain capillary endothelial cell lines established from a transgenic murine harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci. 2:1–11; 2000.

    Article  Google Scholar 

  • Huber, J. D.; Egleton, R. D.; Davis, T. P. Molecular physiology and patho-physiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24:719–725; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jinno-Oue, A.; Wilt, S. G.; Hanson, C.; Dugger, N. V.; Hoffman, P. M.; Masuda, M.; Ruscetti, S. K. Expression of inducible nitric oxide synthase and elevation of tyrosine nitration of a 32-kilodalton cellular protein in brain capillary endothelial cells from rat infected with a neuropathogenic murine leukemia virus. J. Virol. 77:5145–5151; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Joo, F. The cerebral microvessels in culture, an update. J. Neurochem. 58:1–17; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Joo, F. The blood-brain barrier in vitro: the second decade. Neurochem. Int. 23:499–521; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N. Small vessel disease and Alzheimer's dementia: pathological considerations. Cerebrovasc. Dis. 13:48–52; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kim, G. W.; Kondo, T.; Noshita, N.; Chan, P. H. Manganese peroxide dismutase exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 33:809–815; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani, M. G.; Corada, M.; Caveda, L.; Breviario, F.; Ayalon, O.; Geiger, B.; Dejana, E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin, and α-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol. 129:203–214; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani, M. G.; Resnati, M.; Raiteri, M.; Pigott, R.; Pisacane, A.; Houen, G.; Ruco, L. P.; Dejana, E. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell Biol. 118:1511–1522; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Leker, R. R.; Shohami, E.; Constantini, S. Experimental models of head trauma. Acta Neurochir. Suppl. 83:49–54; 2002.

    Google Scholar 

  • Lossinsky, A. S.; Song, M. J.; Wisniewski, H. M. High voltage electron microscopic studies of endothelial cell tubular structures in the mouse blood-brain barrier following brain trauma. Acta Neuropathol. 77:480–488; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, T. Vascular pathology in Alzheimer's disease. Ann. NY Acad. Sci. 977:303–305; 2002.

    Article  PubMed  Google Scholar 

  • Montesano, R.; Pepper, M. S.; Mohle-Steinleinl, U.; Risau, W.; Wagner, E. F.; Orci, L. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Muller, W. A.; Randolph, G. I. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J. Leuk. Biol. 66:698–704; 1999.

    CAS  Google Scholar 

  • Nitta, T.; Hata, M.; Gotoh, S.; Seo Y.; Sasaki, H.; Hashimoto, N.; Furuse, M.; Tsukita, S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell. Biol. 161:653–660; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Omidi, Y.; Campbell, L.; Barar, J.; Connell, D.; Akhtar, S.; Gumbleton, M. Evaluation of the immortalized murine brain capillary endothelial cell line b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pachter, J. S. Association of mRNA with the cytoskeletal framework: its role in the regulation of gene expression. Crit. Rev. Euk. Gene Exp. 2:1–8; 1992.

    CAS  Google Scholar 

  • Palladini, G.; Finardi, G.; Bellomo, G. Modifications of vimentin filament architecture and vimentin-nuclear interactions by cholesterol oxides in 73/73 endothelial cells. Exp. Cell Res. 223:83–90; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, F. E.; Freisen, J.; Kriznac-Bengez, L.; Janigro, D. Use of a three-dimensional in vitro model to assay nucleoside efflux from brain. Brain Res. 980:233–241; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, J.; McQuaid, S.; Mirakhur, M.; Kirk, J. Abnormal endothelial tight junctions in active lesions and normal appearing white matter in multiple sclerosis. Brain Pathol. 12:154–169; 2002.

    Article  PubMed  Google Scholar 

  • Rao, R. K.; Basuroy, S.; Rao, V. U.; Karnaky, K. J.; Jr.; Gupta, A. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem. J. 368:471–481; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, G. A. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8:586–595; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, S. K.; Perkins, B. N.; Lim, Y. C.; Liu, Y.; Nusrat, A.; Schnell, F. J.; Parkos, C. A.; Luscinkas, F. W. Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhesion molecule-1 (CS31) at human vascular endothelial junctions by cytokines tumor necrosis factor-alpha plus interferon gamma does not reduce leukocyte transmigration under flow. Am. J. Pathol. 159:2281–2291; 2001.

    PubMed  CAS  Google Scholar 

  • Song, L.; Pachter, J. S. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc. Res., in press. Available online Sept. 23, 2003. Hardcopy still in press.

  • Stumm, R. K.; Rummel, J.; Junker, V.; Culmsee, C.; Pfeiffer, M.; Krieglstein, J.; Hollt, V.; Schulz, S. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J. Neurosci. 22:5865–5878; 2002.

    PubMed  CAS  Google Scholar 

  • Tsukita, S.; Furuse, M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 9:268–273; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wachtel, M.; Bollinger, M. E.; Ishihara, H.; Frei, K.; Bluethmann, H.; Gloor, S. M. Down-regulation of occludin expression in astrocytes by tumour necrosis factor (TNF) is mediated via TNF type-1 receptor and nuclear factor-kappaB activation. J. Neurochem. 78:155–162; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wassmer, C. C.; Combes, V.; Grau, G. F. Pathophysiology of cerebral malaria: role of host cells in the modulation of cytoadhesion. Ann. NY Acad. Sci. 992:30–38; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wijsman, J. A.; Shivers, R. R. Immortalized murine brain endothelial cells are ultrastructurally similar to endothelial cells and respond to astrocyte-conditioned medium. In Vitro Cell. Dev. Biol. 34A:777–784; 1998.

    Google Scholar 

  • Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc. Pharmacol. 38:323–337; 2002.

    Article  CAS  Google Scholar 

  • Wolburg, H.; Neuhaus, J.; Kniesel, U.; Krauss, B.; Schmid, E.-M.; Ocalan, M.; Farrell, C.; Risau, W. Modulation of tight junction structure in blood-brain barrier ECs. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:1347–1357; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Pachter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Pachter, J.S. Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell.Dev.Biol.-Animal 39, 313–320 (2003). https://doi.org/10.1290/1543-706X(2003)039<0313:COMBME>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0313:COMBME>2.0.CO;2

Key words

Navigation