Skip to main content

Advertisement

Log in

Influence of Neoadjuvant Chemotherapy on Radiotherapy for Breast Cancer

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Neoadjuvant chemotherapy is a standard treatment option for patients with locally advanced operable breast cancer and is increasingly used in early breast cancer. Initial randomized trials of neoadjuvant chemotherapy established equivalency to adjuvant chemotherapy in terms of survival, but they also demonstrated improved rates of breast conservation and the ability to modify the risk of locoregional recurrence after a favorable response to chemotherapy. High-quality nonrandomized data have helped to tailor radiotherapy treatment recommendations after neoadjuvant chemotherapy and breast-conserving surgery or mastectomy. Results from an ongoing phase 3 randomized trial (NSABP B-51/RTOG 1304) will help to clarify the value of locoregional radiotherapy for patients with clinical N1 disease that becomes node negative after neoadjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Mamounas EP, Anderson SJ, Dignam JJ, et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J Clin Oncol. 2012;30:3960–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol. 2001;19:4224–37.

    PubMed  Google Scholar 

  3. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001:96–102.

  4. Fisher B, Bryant J, Wolmark N, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16:2672–85.

    CAS  PubMed  Google Scholar 

  5. Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26:778–85.

    Article  PubMed  Google Scholar 

  6. Early Breast Cancer Trialists’ Collaborative Group. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. N Engl J Med. 1995;333:1444–55.

  7. Early Breast Cancer Trialists’ Collaborative Group. Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Lancet. 2000;355(9217):1757–70.

  8. Darby S, McGale P, Correca C, et al; Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.

    Article  CAS  PubMed  Google Scholar 

  9. Overgaard M, Hansen PS, Overgaard J, et al; Danish Breast Cancer Cooperative Group 82b Trial. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. N Engl J Med. 1997;337:949–55.

    Article  CAS  PubMed  Google Scholar 

  10. Overgaard M, Jensen MB, Overgaard J, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet. 1999;353(9165):1641–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ragaz J, Jackson SM, Le N, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med. 1997;337:956–62.

    Article  CAS  PubMed  Google Scholar 

  12. Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15:2483–93.

    CAS  PubMed  Google Scholar 

  13. Akay CL, Meric-Bernstam F, Hunt KK, et al. Evaluation of the MD Anderson Prognostic Index for local-regional recurrence after breast conserving therapy in patients receiving neoadjuvant chemotherapy. Ann Surg Oncol. 2012;19:901–7.

    Article  PubMed  Google Scholar 

  14. Buchholz TA, Katz A, Strom EA, et al. Pathologic tumor size and lymph node status predict for different rates of locoregional recurrence after mastectomy for breast cancer patients treated with neoadjuvant versus adjuvant chemotherapy. Int J Radiat Oncol Biol Phys. 2002;53:880–8.

    Article  PubMed  Google Scholar 

  15. Buchholz TA, Tucker SL, Masullo L, et al. Predictors of local-regional recurrence after neoadjuvant chemotherapy and mastectomy without radiation. J Clin Oncol. 2002;20:17–23.

    Article  CAS  PubMed  Google Scholar 

  16. Chen AM, Meric-Bernstam F, Hunt KK, et al. Breast conservation after neoadjuvant chemotherapy: the MD Anderson cancer center experience. J Clin Oncol. 2004;22:2303–12.

    Article  PubMed  Google Scholar 

  17. Garg AK, Oh JL, Oswald MJ, et al. Effect of postmastectomy radiotherapy in patients <35 years old with stage II–III breast cancer treated with doxorubicin-based neoadjuvant chemotherapy and mastectomy. Int J Radiat Oncol Biol Phys. 2007;69:1478–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Garg AK, Strom EA, McNeese MD, et al. T3 disease at presentation or pathologic involvement of four or more lymph nodes predict for locoregional recurrence in stage II breast cancer treated with neoadjuvant chemotherapy and mastectomy without radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:138–45.

    Article  PubMed  Google Scholar 

  19. Huang EH, Strom EA, Perkins GH, et al. Comparison of risk of local-regional recurrence after mastectomy or breast conservation therapy for patients treated with neoadjuvant chemotherapy and radiation stratified according to a prognostic index score. Int J Radiat Oncol Biol Phys. 2006;66:352–7.

    Article  PubMed  Google Scholar 

  20. Huang EH, Tucker SL, Strom EA, et al. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. J Clin Oncol. 2004;22:4691–9.

    Article  PubMed  Google Scholar 

  21. McGuire SE, Gonzalez-Angulo AM, Huang EH, et al. Postmastectomy radiation improves the outcome of patients with locally advanced breast cancer who achieve a pathologic complete response to neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys. 2007;68:1004–9.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Nagar H, Mittendorf EA, Strom EA, et al. Local-regional recurrence with and without radiation therapy after neoadjuvant chemotherapy and mastectomy for clinically staged T3N0 breast cancer. Int J Radiat Oncol Biol Phys. 2011;81:782–7.

    Article  PubMed  Google Scholar 

  23. Boughey JC, Peintinger F, Meric-Bernstam F, et al. Impact of preoperative versus postoperative chemotherapy on the extent and number of surgical procedures in patients treated in randomized clinical trials for breast cancer. Ann Surg. 2006;244:464–70.

    PubMed Central  PubMed  Google Scholar 

  24. Mieog JS, van der Hage JA, van de Velde CJ. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 2007;94:1189–200.

    Article  CAS  PubMed  Google Scholar 

  25. Mittendorf EA, Buchholz TA, Tucker SL, et al. Impact of chemotherapy sequencing on local-regional failure risk in breast cancer patients undergoing breast-conserving therapy. Ann Surg. 2013;257:173–9.

    Article  PubMed  Google Scholar 

  26. Buzdar AU, Valero V, Ibrahim NK, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2–positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res. 2007;13:228–33.

    Article  CAS  PubMed  Google Scholar 

  27. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375(9712):377–84.

    Article  CAS  PubMed  Google Scholar 

  28. Kuerer HM, Sahin AA, Hunt KK, et al. Incidence and impact of documented eradication of breast cancer axillary lymph node metastases before surgery in patients treated with neoadjuvant chemotherapy. Ann Surg. 1999;230:72–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mamounas EP, Brown A, Anderson S, et al. Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2005;23:2694–702.

    Article  PubMed  Google Scholar 

  30. Marks LB, Prosnitz LR. Reducing local therapy in patients responding to preoperative systemic therapy: are we outsmarting ourselves?. J Clin Oncol. 2014;32:491–3.

    Article  PubMed  Google Scholar 

  31. Whelan TJ, Olivotto I, Ackerman I, et al. NCIC-CTG MA.20: an intergroup trial of regional nodal irradiation in early breast cancer. J Clin Oncol. 2011;29(Suppl):LBA1003.

    Google Scholar 

  32. Le Scodan R, Selz J, Stevens D, et al. Radiotherapy for stage II and stage III breast cancer patients with negative lymph nodes after preoperative chemotherapy and mastectomy. Int J Radiat Oncol Biol Phys. 2012;82:e1–7.

    Article  PubMed  Google Scholar 

  33. Shim SJ, Park W, Huh SJ, et al. The role of postmastectomy radiation therapy after neoadjuvant chemotherapy in clinical stage II-III breast cancer patients with pN0: a multicenter, retrospective study (KROG 12-05). Int J Radiat Oncol Biol Phys. 2014;88:65–72.

    Article  PubMed  Google Scholar 

  34. Boughey JC, Suman VJ, Mittendorf EA, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA. 2013;310:1455–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kuehn T, Bauerfeind I, Fehm T, et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 2013;14:609–18.

    Article  PubMed  Google Scholar 

  36. Wang X, Pan T, Pinnix C, et al. Cardiac motion during deep-inspiration breath-hold: implications for breast cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:708–14.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Buchholz TA, Lehman CD, Harris JR, et al. Statement of the science concerning locoregional treatments after preoperative chemotherapy for breast cancer: a National Cancer Institute conference. J Clin Oncol. 2008;26:791–7.

    Article  PubMed  Google Scholar 

  38. Cutter DJ, Darby SC, Yusuf SW. Risks of heart disease after radiotherapy. Tex Heart Inst J. 2011;38:257–8.

    PubMed Central  PubMed  Google Scholar 

  39. Jagsi R, Griffith KA, Koelling T, Roberts R, Pierce LJ. Rates of myocardial infarction and coronary artery disease and risk factors in patients treated with radiation therapy for early-stage breast cancer. Cancer. 2007;109:650–7.

    Article  PubMed  Google Scholar 

  40. Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol. 2007;17:108–20.

    Article  PubMed  Google Scholar 

  41. McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.

    Article  PubMed  Google Scholar 

  42. Parkin DM, Darby SC. Cancers in 2010 attributable to ionising radiation exposure in the UK. Br J Cancer. 2011;105:S57–65.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kronowitz SJ, Robb GL. Radiation therapy and breast reconstruction: a critical review of the literature. Plast Reconstr Surg. 2009;124:395–408.

    Article  CAS  Google Scholar 

Download references

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Garg MD.

Additional information

Acknowledgment: This educational review series, “Neoadjuvant Therapy in Breast Cancer” is supported by an educational grant from Genentech, Inc. The Society of Surgical Oncology offers CME/MOC for this educational review series. Visit moc.surgonc.org for additional information.

Annals of Surgical Oncology educational reviews represent the journal’s commitment to the peer review and publication of high quality research necessary to define the safety, toxicity, or effectiveness of potential therapeutic agents compared with conventional alternatives.

This Educational Review Series may include information regarding the use of medications that may be outside the approved labeling for these products. Physicians should consult the current prescribing information for these products. Authors of Annals of Surgical Oncology educational reviews are provided at the time of article solicitation with this statement regarding off-label pharmaceutical information and research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A.K., Buchholz, T.A. Influence of Neoadjuvant Chemotherapy on Radiotherapy for Breast Cancer. Ann Surg Oncol 22, 1434–1440 (2015). https://doi.org/10.1245/s10434-015-4402-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4402-x

Keywords

Navigation