Skip to main content

Advertisement

Log in

Phase I Trial of Neoadjuvant Conformal Radiotherapy Plus Sorafenib for Patients with Locally Advanced Soft Tissue Sarcoma of the Extremity

  • Bone and Soft Tissue Sarcomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Despite effective local therapy with surgery and radiotherapy (RT), ~50 % of patients with high-grade soft tissue sarcoma (STS) will relapse and die of disease. Since experimental data suggest a significant synergistic effect when antiangiogenic targeted therapies such as sorafenib are combined with RT, we chose to evaluate preoperative combined modality sorafenib and conformal RT in a phase I/II trial among patients with extremity STS amenable to treatment with curative intent.

Methods

For the phase I trial, eight patients with intermediate- or high-grade STS >5 cm in maximal dimension or low-grade STS >8 cm in maximal dimension received concomitant sorafenib (dose escalation cohort 1:200 twice daily, cohort 2:200/400 daily) and preoperative RT (50 Gy in 25 fractions). Sorafenib was continued during the entire period of RT as tolerated. Surgical resection was completed 4–6 weeks following completion of neoadjuvant sorafenib/RT. Three sorafenib dose levels were planned. Primary endpoints of the phase I trial were maximal tolerated dose and dose-limiting toxicity (DLT).

Results

Eight patients were enrolled in the phase I (five females, median age 44 years, two high-grade pleomorphic, two myxoid/round cell liposarcoma, four other). Median tumor size was 16 cm (range 8–29), and all tumors were located in the lower extremity. Two of five patients treated at dose level 2 developed DLT consisting of grade 3 rash not tolerating drug reintroduction. Other grade 3 side effects included anemia, perirectal abscess, and supraventricular tachycardia. Radiation toxicity (grade 1 or 2 dermatitis; N = 8) and post-surgical complications (three grade 3 wound complications) were comparable to historical controls and other series of preoperative RT monotherapy. Complete pathologic reponse (≥95 % tumor necrosis) was observed in three patients (38 %).

Conclusion

Neoadjuvant sorafenib in combination with RT is tolerable and appears to demonstrate activity in locally advanced extremity STS. Further study to determine efficacy at dose level 1 is warranted. (ClinicalTrials.gov identifier NCT00805727).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O’Sullivan B, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002;359(9325):2235–41.

    Article  PubMed  Google Scholar 

  2. Jain RK. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol. 2002;29(6 Suppl 16):3–9.

    Article  PubMed  CAS  Google Scholar 

  3. Jain RK. Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy. Cold Spring Harb Symp Quant Biol. 2002;67:239–48.

    Article  PubMed  CAS  Google Scholar 

  4. Yoon SS, et al. Circulating angiogenic factor levels correlate with extent of disease and risk of recurrence in patients with soft tissue sarcoma. Ann Oncol. 2004;15(8):1261–6.

    Article  PubMed  CAS  Google Scholar 

  5. Yoon SS, et al. Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray gene expression. J Surg Res. 2006;135(2):282–90.

    Article  PubMed  CAS  Google Scholar 

  6. Yudoh K, et al. Concentration of vascular endothelial growth factor in the tumour tissue as a prognostic factor of soft tissue sarcomas. Br J Cancer. 2001;84(12):1610–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Senan S, Smit EF. Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist. 2007;12(4):465–77.

    Article  PubMed  CAS  Google Scholar 

  8. Czito BG, et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: phase I trial results. Int J Radiat Oncol Biol Phys. 2007;68(2):472–8.

    Article  PubMed  CAS  Google Scholar 

  9. Awada A, et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer. 2005;92(10):1855–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Strumberg D, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23(5):965–72.

    Article  PubMed  CAS  Google Scholar 

  11. Ratain MJ, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12.

    Article  PubMed  CAS  Google Scholar 

  12. Escudier B, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    Article  PubMed  CAS  Google Scholar 

  13. Parulekar WR, Eisenhauer EA. Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice. J Natl Cancer Inst. 2004;96(13):990–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kurzrock R, Benjamin RS. Risks and benefits of phase 1 oncology trials, revisited. N Engl J Med. 2005;352(9):930–2.

    Article  PubMed  CAS  Google Scholar 

  15. Shah D, et al. Complete pathologic response to neoadjuvant radiotherapy is predictive of oncological outcome in patients with soft tissue sarcoma. Anticancer Res. 2012;32(9):3911–5.

    PubMed  Google Scholar 

  16. Canter RJ, et al. Radiographic and histologic response to neoadjuvant radiotherapy in patients with soft tissue sarcoma. Ann Surg Oncol. 2010;17(10):2578–84.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Eilber FC, et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol. 2001;19(13):3203–9.

    PubMed  CAS  Google Scholar 

  18. Wilhelm SM, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.

    Article  PubMed  CAS  Google Scholar 

  19. Plastaras JP, et al. Cell cycle-dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007;67(19):9443–54.

    Article  PubMed  CAS  Google Scholar 

  20. Chang YS, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59(5):561–74.

    Article  PubMed  CAS  Google Scholar 

  21. Lim JH, et al. Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene. 2004; 23(58):9427–31.

    Article  PubMed  CAS  Google Scholar 

  22. Wunder JS, et al. Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol. 2007;8(6):513–24.

    Article  PubMed  Google Scholar 

  23. Frustaci S, et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: results of the Italian randomized cooperative trial. J Clin Oncol. 2001;19(5):1238–47.

    PubMed  CAS  Google Scholar 

  24. Frustaci S, et al. Ifosfamide in the adjuvant therapy of soft tissue sarcomas. Oncology. 2003;65 Suppl 2:80–4.

    Article  PubMed  CAS  Google Scholar 

  25. Gortzak E, et al. A randomised phase II study on neo-adjuvant chemotherapy for ‘high-risk’ adult soft-tissue sarcoma. Eur J Cancer. 2001;37(9):1096–103.

    Article  PubMed  CAS  Google Scholar 

  26. Petrioli R, et al. Adjuvant epirubicin with or without Ifosfamide for adult soft-tissue sarcoma. Am J Clin Oncol. 2002;25(5):468–73.

    Article  PubMed  Google Scholar 

  27. Brodowicz T, et al. Intensified adjuvant IFADIC chemotherapy for adult soft tissue sarcoma: a prospective randomized feasibility trial. Sarcoma. 2000;4(4):151–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Pervaiz N, et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008; 113(3):573–81.

    Article  PubMed  Google Scholar 

  29. Maki RG, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27(19):3133–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. von Mehren M, et al. Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. Cancer. 2012;118(3):770–6.

    Article  CAS  Google Scholar 

  31. Li J, et al. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys. 2005;62(5):1477–85.

    Article  PubMed  CAS  Google Scholar 

  32. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park). 2005;19(4 Suppl 3):7–16.

    PubMed  Google Scholar 

  33. Canter RJ, et al. Radiographic and histologic response to neoadjuvant radiotherapy in patients with soft tissue sarcoma. Ann Surg Oncol. 2010;17(10):2578–84.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wunder JS, et al. The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. J Bone Joint Surg Am. 1998;80(7):1020–33.

    PubMed  CAS  Google Scholar 

  35. Romero AI, et al. Regulation of CD4+NKG2D+ Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Rα and NKG2D triggering. Cancer Res. 2014;74(1):68–80.

    Article  PubMed  CAS  Google Scholar 

  36. Kattan MW, Leung DH, Brennan MF. Postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol. 2002;20(3):791–6.

    Article  PubMed  Google Scholar 

  37. Pitson G, et al. Radiation response: an additional unique signature of myxoid liposarcoma. Int J Radiat Oncol Biol Phys. 2004;60(2):522–6.

    Article  PubMed  Google Scholar 

  38. Roberge D, et al. Radiological and pathological response following pre-operative radiotherapy for soft-tissue sarcoma. Radiother Oncol. 2010;97(3):404–7.

    Article  PubMed  Google Scholar 

  39. Chung PW, et al. Radiosensitivity translates into excellent local control in extremity myxoid liposarcoma: a comparison with other soft tissue sarcomas. Cancer. 2009; 115(14):3254–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The study was supported by University of California Davis’ Clinical and Translational Science Award UL1 TR000002, Bayer-Onyx Pharmaceuticals, the National Center for Advancing Translational Sciences (NCATS) and the NIH through Grant number 1K12CA138464-01A2. We also thank Dr. Philip Mack and William S. Holland from the Molecular Pharmacology Core Laboratory at the University of California Davis Comprehensive Cancer Center for support in the development and conduct of the serum biomarker correlative studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Canter MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canter, R.J., Borys, D., Olusanya, A. et al. Phase I Trial of Neoadjuvant Conformal Radiotherapy Plus Sorafenib for Patients with Locally Advanced Soft Tissue Sarcoma of the Extremity. Ann Surg Oncol 21, 1616–1623 (2014). https://doi.org/10.1245/s10434-014-3543-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3543-7

Keywords

Navigation