Skip to main content
Log in

Simultaneous population optimal design for pharmacokinetic-pharmacodynamic experiments

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Multiple outputs or measurement types are commonly gathered in biological experiments. Often, these experiments are expensive (such as clinical drug trials) or require careful design to achieve the desired information content. Optimal experimental design protocols could help alleviate the cost and increase the accuracy of these experiments. In general, optimal design techniques ignore between-individual variability, but even work that incorporates it (population optimal design) has treated simultaneous multiple output experiments separately by computing the optimal design sequentially, first finding the optimal design for one output (eg, a pharmacokinetic [PK] measurement) and then determining the design for the second output (eg, a pharmacodynamic [PD] measurement). Theoretically, this procedure can lead to biased and imprecise results when the second model parameters are also included in the first model (as in PK-PD models). We present methods and tools for simultaneous population D-optimal experimental designs, which simultaneously compute the design of multiple output experiments, allowing for correlation between model parameters. We then apply these methods to simulated PK-PD experiments. We compare the new simultaneous designs to sequential designs that first compute the PK design, fix the PK parameters, and then compute the PD design in an experiment. We find that both population designs yield similar results in designs for low sample number experiments, with simultaneous designs being possibly superior in situations in which the number of samples is unevenly distributed between outputs. Simultaneous population D-optimality is a potentially useful tool in the emerging field of experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breimer DD, Danhof M. Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The “wooden shoe” paradigm.Clin Pharmacokinet. 1997;32:259–267.

    Article  PubMed  CAS  Google Scholar 

  2. Levy G. The case for preclinical pharmacodynamics. In: Yacobi A, Skelly JP, Shah VP, Benet LZ, eds.Integration of Pharmacokinetics. Pharmacodynamics and Toxicokinetics in Rational Drug Development. New York, NY: Plenum Press, 1993:7–13.

    Google Scholar 

  3. Gabrielsson JH, Luthman J, van der Graaf PH. Utility of kineticdynamic reasoning in decision making in drug candidate selection. In: Danhof M, Karlsson M, Powel RJ, eds.Measurement and Kinetics of In Vivo Drug Effects.Advances in Simultaneous Pharmacokinetic/ Pharmacodynamic Modelling.Vol 1. The Netherlands: Nordwijkerhout; 2002:161–165.

    Google Scholar 

  4. US Food and Drug Administration. FDA Modernization Act of 1997. Food and Drug Administration Web site. Available at: www.fda.gov. Accessed October 2003.

  5. US Food and Drug Administration. Providing clinical evidence of effectiveness for human drugs and biological products. Food and Drug Administration Web site. Available at: www.fda.gov. Accessed October 2003.

  6. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments.J Pharmacokinet Biopharm. 1981;9:739–756.

    Article  PubMed  CAS  Google Scholar 

  7. US Congress.Pharmaceutical R&D: Costs, Risks and Rewards. Washington, DC: US Government Printing Office, 1993:OTA-H-522.

  8. Kaitin KI.Outlook 2002. Boston, MA: Tufts Center for the Study of Drug Development, Tufts University; 2002.

    Google Scholar 

  9. al-Banna MK, Kelman AW, Whiting B. Experimental design and efficient parameter estimation in population pharmacokinetics.J Pharmacokinet Biopharm. 1990;18:347–360.

    Article  PubMed  CAS  Google Scholar 

  10. Retout S, Mentre F, Bruno R. Fisher information matrix for nonlinear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics.Stat Med. 2002;21:2623–2639.

    Article  PubMed  Google Scholar 

  11. Atkinson AC, Donev AN.Optimum Experimental Designs. Oxford, UK: Clarendon Press, 1992.

    Google Scholar 

  12. Tod M, Padoin C, Louchahi K, Moreau-Tod B, Petitjean O, Perret G. Application of optimal sampling theory to the determination of metacycline pharmacokinetic parameters: effect of model misspecification.J Pharmacokinet Biopharm. 1994;22:129–146.

    Article  PubMed  CAS  Google Scholar 

  13. Landaw EM. Robust sampling designs for compartmental models under large prior Eigenvalue uncertainties. In: Eisenfeld J, DeLisi C, eds.Mathematics and Computers in Biomedical Applications, North-Holland, The Netherlands: Elsevier Science Publishers BV; 1985:181–187.

    Google Scholar 

  14. Duffull SB, Mentre F, Aarons L. Optimal design of a population pharmacodynamic experiment for ivabradine.Pharm Res. 2001;18:83–89.

    Article  PubMed  CAS  Google Scholar 

  15. Mentre F, Dubruc C, Thenot JP. Population pharmacokinetic analysis and optimization of the experimental design for mizolastine solution in children.J Pharmacokient Pharmacodyn. 2001;28:299–319.

    Article  CAS  Google Scholar 

  16. Mentre F, Mallet A, Baccar D. Optimal design in random-effects regression models.Biometrika. 1997;84:429–442.

    Article  Google Scholar 

  17. Retout S, Duffull S, Mentre F. Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs.Comput Methods Programs Biomed. 2001;65:141–151.

    Article  PubMed  CAS  Google Scholar 

  18. Merle Y, Tod M. Impact of pharmacokinetic-pharmacodynamic model linearization on the accuracy of population information matrix and optimal design.J Pharmacokinet Pharmacodyn. 2001;28:363–388.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L, Beal SL, Sheiner LB. Simultaneous vs sequential analysis for population PK/PD data I: best-case performance.J Pharmacokinet Pharmacodyn. 2003;30:387–404.

    Article  PubMed  Google Scholar 

  20. Danhof M, Karlsson M, Powell RJ, eds. Advances in Simultaneous Pharmacokinetic/Pharmacodynamic Modelling. Part 1 and 2 4th International Symposium on measurement and Kinetics of In Vivo Drug Effects; April 24–27; Nordwijkerhout, The Netherlands. Leiden, The Netherlands: Leiden University; 2002. 1–200.

    Google Scholar 

  21. Davidian M, Giltiman DM.Nonlinear Models for Repeated Measurement Data. New York, NY: Chapman & Hall/CRC; 1995:241.

    Google Scholar 

  22. Fedorov VV, Hackl P.Model Oriented Design of Experiments. New York, NY: Springer-Verlag, 1997.

    Google Scholar 

  23. Vonesh EF, Chinchilli VM.Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York, NY: Marcel Dekker Inc; 1997.

    Google Scholar 

  24. Hooker AC, Foracchia M, Dodds MG, Vicini P. An evaluation of population D-optimal designs via pharmacokinetic simulations.Ann Biomed Eng. 2003;31:98–111.

    Article  PubMed  Google Scholar 

  25. Foracchia M, Hooker A, Vicini P, Ruggeri A. POPED, a software for optimal experiment design in population kinetics.Comput Methods Programs Biomed. 2004;74:29–46.

    Article  PubMed  Google Scholar 

  26. Larsen RJ, Marx ML.An Introduction to Mathematical Statistics and Its Applications. Upper Saddle River, NJ: Prentice-Hall; 1986:248.

    Google Scholar 

  27. Solkner J. Choice of optimality criteria for the design of crossbreeding experiments.J Anim Sci. 1993;71:2867–2873.

    PubMed  CAS  Google Scholar 

  28. Retout S, Mentre F. Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics.J Biopharm Stat. 2003;13:209–227.

    Article  PubMed  Google Scholar 

  29. Sheiner L, Wakefield j. Population modelling in drug development.Stat Methods Med Res. 1999;8:183–193.

    Article  PubMed  CAS  Google Scholar 

  30. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine.Clin Pharmacol Ther. 1979;25:358–371.

    PubMed  CAS  Google Scholar 

  31. Draper NR, Hunter WG. Design of experiments for parameter estimation in multiresponse situations.Biometrika. 1966;53:525–533.

    Google Scholar 

  32. Bennett JE, Wakefield JC. A comparison of a Bayesian population method with two methods as implemented in commercially available software.J Pharmacokinet Biopharm. 1996;24:403–432.

    Article  PubMed  CAS  Google Scholar 

  33. Hashimoto Y, Sheiner LB. Designs for population pharmacodynamics: value of pharmacokinetic data and population analysis.J Pharmacokinet Biopharm. 1991;19:333–353.

    Article  PubMed  CAS  Google Scholar 

  34. Colburn WA. Simultaneous pharmacokinetic and pharmacodynamic modeling.J Pharmacokinet Biopharm. 1981;9:367–388.

    Article  PubMed  CAS  Google Scholar 

  35. Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia.Clin Pharmacol Ther. 1996;60:619–635.

    Article  PubMed  CAS  Google Scholar 

  36. Beal S, Sheiner L.NONMEM User’s Guide. San Francisco, CA: University of California; 1992.

    Google Scholar 

  37. Holford N, Hashimoto Y, Sheiner LB. Time and theophylline concentration help explain the recovery of peak flow following acute airways obstruction. Population analysis of a randomised concentration controlled trial.Clin Pharmacokinet. 1993;25:506–515.

    Article  PubMed  CAS  Google Scholar 

  38. Mager DE, Jusko WJ. Receptor-mediated pharmacokinetic/ pharmacodynamic model of interferon-beta la in humans.Pharm Res. 2002;19:1537–1543.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vicini.

Additional information

Published: November 1, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooker, A., Vicini, P. Simultaneous population optimal design for pharmacokinetic-pharmacodynamic experiments. AAPS J 7, 76 (2005). https://doi.org/10.1208/aapsj070476

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070476

Keywords

Navigation