Skip to main content

Advertisement

Log in

Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Although small interfering RNA (siRNA) holds great therapeutic promise, its delivery to the disease site remains a paramount obstacle. In this study, we tested whether brain endothelial cell-derived exosomes could deliver siRNA across the blood–brain barrier (BBB) in zebrafish. Natural exosomes were isolated from brain endothelial bEND.3 cell culture media and vascular endothelial growth factor (VEGF) siRNA was loaded in exosomes with the assistance of a transfection reagent. While fluorescence-activated cell flow cytometry and immunocytochemistry staining studies indicated that wild-type exosomes significantly increased the uptake of fluorescence-labeled siRNA in the autologous brain endothelial cells, decreased fluorescence intensity was observed in the cells treated with the tetraspanin CD63 antibody-blocked exosome-delivered formulation (p < 0.05). In the transport study, exosomes also enhanced the permeability of rhodamine 123 in a co-cultured monolayer of brain endothelial bEND.3 cell and astrocyte. Inhibition at the expression of VEGF RNA and protein levels was observed in glioblastoma-astrocytoma U-87 MG cells treated with exosome-delivered siRNAs. Imaging results showed that exosome delivered more siRNAs across the BBB in Tg(fli1:GFP) zebrafish. In a xenotransplanted brain tumor model, exosome-delivered VEGF siRNAs decreased the fluorescence intensity of labeled cancer cells in the brain of zebrafish. Brain endothelial cell-derived exosomes could be potentially used as a natural carrier for the brain delivery of exogenous siRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther. 2015;15:269–85. doi:10.1517/14712598.2015.983070.

  2. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53. doi:10.1038/nrd2310.

    Article  PubMed  Google Scholar 

  3. Kubowicz P, Zelaszczyk D, Pekala E. RNAi in clinical studies. Curr Med Chem. 2013;20(14):1801–16.

    Article  CAS  PubMed  Google Scholar 

  4. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77. doi:10.1038/nmat3765.

    Article  CAS  PubMed  Google Scholar 

  5. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38. doi:10.1038/nrd2742.

    Article  CAS  PubMed  Google Scholar 

  6. Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines. 2015;3(3):662–85. doi:10.3390/vaccines3030662.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gidwani M, Singh AV. Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Curr Pharm Biotechnol. 2014;14(14):1201–12.

    Article  PubMed  Google Scholar 

  8. Mishra D, Hubenak JR, Mathur AB. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A. 2013;101(12):3646–60. doi:10.1002/jbm.a.34642.

    Article  PubMed  Google Scholar 

  9. Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng. 2014;16:347–70. doi:10.1146/annurev-bioeng-071813-105119.

    Article  CAS  PubMed  Google Scholar 

  10. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6. doi:10.1016/j.addr.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  11. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–41. doi:10.2147/IJN.S29661.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31(5):543–51. doi:10.1016/j.biotechadv.2012.08.008.

    Article  CAS  PubMed  Google Scholar 

  13. Lakhal S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays. 2011;33(10):737–41. doi:10.1002/bies.201100076.

    Article  CAS  PubMed  Google Scholar 

  14. van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2013;65(3):331–5. doi:10.1016/j.addr.2012.06.011.

    Article  PubMed  Google Scholar 

  15. Rana S, Zoller M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans. 2011;39(2):559–62. doi:10.1042/BST0390559.

    Article  CAS  PubMed  Google Scholar 

  16. Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS. 2013;10(1):4. doi:10.1186/2045-8118-10-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. doi:10.1038/nbt.1807.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543. doi:10.1038/srep17543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wahlgren J, Statello L, Skogberg G, Telemo E, Valadi H. Delivery of small interfering RNAs to cells via exosomes. Methods Mol Biol. 2016;1364:105–25. doi:10.1007/978-1-4939-3112-5_10.

    Article  PubMed  Google Scholar 

  20. Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Move Disord. 2014;29(12):1476–85. doi:10.1002/mds.25978.

    Article  CAS  Google Scholar 

  21. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88. doi:10.1186/1478-811X-11-88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14. doi:10.1038/mt.2010.105..

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14. doi:10.1007/s11095-014-1593-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710. doi:10.1021/nn402232g.

    Article  CAS  PubMed  Google Scholar 

  25. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79. doi:10.1038/mt.2011.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, et al. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann Biomed Eng. 2010;38(8):2499–511. doi:10.1007/s10439-010-0023-5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bai S, Yang T, Abbruscato TJ, Ahsan F. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J Pharm Sci. 2008;97(3):1165–78. doi:10.1002/jps.21031.

    Article  CAS  PubMed  Google Scholar 

  28. Yang T, Bantegui T, Pike K, Bloom R, Phipps R, Bai S. In vitro evaluation of optimized liposomes for delivery of small interfering RNA. J Liposome Res. 2014;24:270–9. doi:10.3109/08982104.2014.907306.

    Article  CAS  PubMed  Google Scholar 

  29. Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). Eugene: University of Oregon Press; 1993.

    Google Scholar 

  30. Jeong JY, Kwon HB, Ahn JC, Kang D, Kwon SH, Park JA, et al. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull. 2008;75(5):619–28. doi:10.1016/j.brainresbull.2007.10.043.

    Article  CAS  PubMed  Google Scholar 

  31. Yang XJ, Cui W, Gu A, Xu C, Yu SC, Li TT, et al. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One. 2013;8(4):e61801. doi:10.1371/journal.pone.0061801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gururangan S, Fangusaro J, Poussaint TY, McLendon RE, Onar-Thomas A, Wu S, et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas—a Pediatric Brain Tumor Consortium study. Neuro-Oncology. 2014;16(2):310–7. doi:10.1093/neuonc/not154.

    Article  CAS  PubMed  Google Scholar 

  33. Geldenhuys WJ, Allen DD, Bloomquist JR. Novel models for assessing blood–brain barrier drug permeation. Expert Opin Drug Metab Toxicol. 2012;8(6):647–53. doi:10.1517/17425255.2012.677433.

    Article  CAS  PubMed  Google Scholar 

  34. Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis. 2010;37(1):48–57. doi:10.1016/j.nbd.2009.07.028.

    Article  CAS  PubMed  Google Scholar 

  35. Ghosh YK, Visweswariah SS, Bhattacharya S. Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency. FEBS Lett. 2000;473(3):341–4.

    Article  CAS  PubMed  Google Scholar 

  36. Forster S, Thumser AE, Hood SR, Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One. 2012;7(3):e33253. doi:10.1371/journal.pone.0033253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shibuya M. VEGF-VEGFR signals in health and disease. Biomol Ther. 2014;22(1):1–9. doi:10.4062/biomolther.2013.113.

    Article  CAS  Google Scholar 

  38. Sia D, Alsinet C, Newell P, Villanueva A. VEGF signaling in cancer treatment. Curr Pharm Des. 2014;20(17):2834–42.

    Article  CAS  PubMed  Google Scholar 

  39. Cardones AR, Banez LL. VEGF inhibitors in cancer therapy. Curr Pharm Des. 2006;12(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  40. Gururangan S, Fangusaro J, Young Poussaint T, Onar-Thomas A, Gilbertson RJ, Vajapeyam S, et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma—a Pediatric Brain Tumor Consortium study. Neuro-Oncology. 2012;14(11):1404–12. doi:10.1093/neuonc/nos213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61. doi:10.1016/j.drudis.2006.10.013.

    Article  CAS  PubMed  Google Scholar 

  42. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8. doi:10.1016/j.bbagen.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  43. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171–82. doi:10.1016/j.bcp.2011.02.011.

    Article  CAS  PubMed  Google Scholar 

  44. Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013;352(1):33–47. doi:10.1007/s00441-012-1428-2.

    Article  CAS  PubMed  Google Scholar 

  45. Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81. doi:10.1016/j.ceb.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  46. Xie X, Ross JL, Cowell JK, Teng Y. The promise of zebrafish as a chemical screening tool in cancer therapy. Future Med Chem. 2015;7(11):1395–405. doi:10.4155/fmc.15.73.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang B, Xuan C, Ji Y, Zhang W, Wang D. Zebrafish xenotransplantation as a tool for in vivo cancer study. Familial Cancer. 2015;14(3):487–93. doi:10.1007/s10689-015-9802-3.

    Article  CAS  PubMed  Google Scholar 

  48. Singleman C, Holtzman NG. Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research. Zebrafish. 2014;11(4):396–406. doi:10.1089/zeb.2014.0976.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Models Mech. 2014;7(7):763–7. doi:10.1242/dmm.016170.

    Article  Google Scholar 

  50. Umans RA, Taylor MR. Zebrafish as a model to study drug transporters at the blood–brain barrier. Clin Pharmacol Ther. 2012;92(5):567–70. doi:10.1038/clpt.2012.168.

    Article  CAS  PubMed  Google Scholar 

  51. Xie J, Farage E, Sugimoto M, Anand-Apte B. A novel transgenic zebrafish model for blood–brain and blood-retinal barrier development. BMC Dev Biol. 2010;10:76. doi:10.1186/1471-213X-10-76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Research reported in this project was supported by the Husson University Faculty Research Funds and School of Pharmacy Seed Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Fogarty, B., LaForge, B. et al. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS J 19, 475–486 (2017). https://doi.org/10.1208/s12248-016-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0015-y

KEY WORDS

Navigation