Skip to main content

Advertisement

Log in

Impact of Epigenetic Dietary Compounds on Transgenerational Prevention of Human Diseases

  • Review Article
  • Theme: Natural Products Drug Discovery in Cancer Prevention
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The etiology of most human diseases involves complicated interactions of multiple environmental factors with individual genetic background which is initially generated early in human life, for example, during the processes of embryogenesis and fetal development in utero. Early embryogenesis includes a series of programming processes involving extremely accurate time-controlled gene activation/silencing expressions, and epigenetic control is believed to play a key role in regulating early embryonic development. Certain dietary components with properties in influencing epigenetic processes are believed to have preventive effects on many human diseases such as cancer. Evidence shows that in utero exposure to certain epigenetic diets may lead to reprogramming of primary epigenetic profiles such as DNA methylation and histone modifications on the key coding genes of the fetal genome, leading to different susceptibility to diseases later in life. In this review, we assess the current advances in dietary epigenetic intervention on transgenerational human disease control. Enhanced understanding of the important role of early life epigenetics control may lead to cost-effective translational chemopreventive potential by appropriate administration of prenatal and/or postnatal dietary supplements leading to early disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DNMT:

DNA methyltransferase

HDACs:

Histone deacetylases

HATs:

Histone acetyltransferases

SFN:

Sulforaphane

EGCG:

(−)-Epigallocatechin-3-gallate

SAM:

S-adenosylmethionine

NTDs:

Neural tube defects

ER:

Estrogen receptor

NCDs:

Noncommunicable diseases

REFERENCES

  1. Jablonka A, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quart Rev Biol. 2009;84(2):131–76.

    Article  PubMed  Google Scholar 

  2. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol. 2013;20(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ho L, Crabtree GR. Chromatin remodeling during development. Nature. 2010;463(7280):474–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res. 2008;647(1–2):30–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet. 2001;2(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  6. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152(6):1308–23.

    Article  CAS  PubMed  Google Scholar 

  7. Tomizawa S, Sasaki H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet. 2012;57(2):84–91.

    Article  CAS  PubMed  Google Scholar 

  8. Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010;1(3–4):101–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113–31.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010;12(1):87–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Liu L, Andrews L, Tollefsbol T. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer. 2009;125(2):286–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Berghe WV. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65:565–76.

    Article  Google Scholar 

  15. Canani RB, Di Costanzo M, Leone L, Bedogni G, Brambilla P, Cianfarani S, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev. 2011;24:198–205.

    Article  CAS  PubMed  Google Scholar 

  16. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vanhees K, Coort S, Ruijters EJ, Godschalk RW, van Schooten FJ, van Waalwijk B, et al. Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J. 2011;25(2):797–807.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson NJ. Migrant studies aid the search for factors linked to breast cancer risk. J Natl Cancer Inst. 2006;98(7):436–8.

    Article  PubMed  Google Scholar 

  19. Mosley BS, Cleves MA, Siega-Riz AM, Shaw GM, Canfield MA, Waller DK, et al. Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol. 2009;169(1):9–17.

    Article  PubMed  Google Scholar 

  20. Strogantsev R, Ferguson-Smith AC. Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct Genomics. 2012;11(3):227–39.

    Article  CAS  PubMed  Google Scholar 

  21. Robertson KD. DNA methylation and chromatin—unraveling the tangled web. Oncogene. 2002;21(35):5361–79.

    Article  CAS  PubMed  Google Scholar 

  22. Deaton A, Bird A. CpG islands and the regulation of transcription. Genes and Dev. 2011;25:1010–22.

    Article  CAS  PubMed  Google Scholar 

  23. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(1):R47–58.

    Article  CAS  PubMed  Google Scholar 

  24. Haaf T. Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Curr Top Microbiol Immunol. 2006;310:13–22.

    CAS  PubMed  Google Scholar 

  25. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    Article  CAS  PubMed  Google Scholar 

  26. Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol. 2004;24(20):9048–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Okano M, Bell D, Haber D, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  28. Okano M, Takebayashi S, Okumura K, Li E. Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2-A3 and 2H1 by in situ hybridization. Cytogenet Cell Genet. 1999;86(3–4):333–4.

    Article  CAS  PubMed  Google Scholar 

  29. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20.

    Article  CAS  PubMed  Google Scholar 

  30. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9.

    Article  PubMed  Google Scholar 

  31. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.

    CAS  PubMed  Google Scholar 

  32. Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev. 2002;12(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci U S A. 2010;107(24):10783–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445(7124):214–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bedford MT. Arginine methylation at a glance. J Cell Sci. 2007;120(Pt 24):4243–6.

    Article  CAS  PubMed  Google Scholar 

  36. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002;298(5595):1039–43.

    Article  CAS  PubMed  Google Scholar 

  37. Byrd KN, Shearn A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci U S A. 2003;100(20):11535–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schnerch A, Lee JB, Graham M, Guezguez B, Bhatia M. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/trithorax group complexes distinctly from functional adult hematopoietic stem cells. Stem Cells Dev. 2013;22(1):73–89.

    Article  CAS  PubMed  Google Scholar 

  39. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development. 2009;136(4):509–23.

    Article  CAS  PubMed  Google Scholar 

  40. Lindeman LC, Winata CL, Aanes H, Mathavan S, Alestrom P, Collas P. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Int J Dev Biol. 2010;54(5):803–13.

    Article  CAS  PubMed  Google Scholar 

  41. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16(14):1779–91.

    Article  CAS  PubMed  Google Scholar 

  42. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  43. Aranda P, Agirre X, Ballestar E, Andreu EJ, Román-Gómez J, Prieto I, et al. Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One. 2009;4(11):e7809.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009;4(1):80–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17(20):2141–51.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  47. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–38.

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman DR, Cornatzer WE, Duerre JA. Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions. Can J Biochem. 1979;57(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  49. McKay JA, Williams EA, Mathers JC. Folate and DNA methylation during in utero development and aging. Biochem Soc Trans. 2004;32(Pt 6):1006–7.

    CAS  PubMed  Google Scholar 

  50. Kim YI. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000;58(7):205–9.

    Article  CAS  PubMed  Google Scholar 

  51. Pitkin RM. Folate and neural tube defects. Am J Clin Nutr. 2007;85(1):285S–8S.

    CAS  PubMed  Google Scholar 

  52. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.

    CAS  PubMed  Google Scholar 

  53. Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL. Obesity, diabetes, and neoplasia in yellow A(vy)/-mice: ectopic expression of the agouti gene. FASEB J. 1994;8(8):479–88.

    CAS  PubMed  Google Scholar 

  54. Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr. 2005;135(11):2703–9.

    CAS  PubMed  Google Scholar 

  55. Balaghi M, Wagner C. DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun. 1993;193:1184–90.

    Article  CAS  PubMed  Google Scholar 

  56. Thompson JR, Gerald PF, Willoughby ML, Armstrong BK. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case–control study. Lancet. 2001;358(9297):1935–40.

    Article  CAS  PubMed  Google Scholar 

  57. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 2007;104(49):19351–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, et al. Soy isoflavones: a safety review. Nutr Rev. 2003;61(1):1–33.

    Article  PubMed  Google Scholar 

  59. Wang TT, Sathyamoorthy N, Phang JM. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 1996;17(2):271–5.

    Article  PubMed  Google Scholar 

  60. Barnes S. Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995;125(3 Suppl):777S–83S.

    CAS  PubMed  Google Scholar 

  61. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114(4):567–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer. 2013;12:19.

    Article  Google Scholar 

  63. Wu AH, Wan P, Hankin J, Tseng CC, Yu MC, Pike MC. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis. 2002;23(9):1491–6.

    Article  CAS  PubMed  Google Scholar 

  64. Warri A, Saarinen NM, Makela S, Hilakivi-Clarke L. The role of early life genistein exposures in modifying breast cancer risk. Br J Cancer. 2008;98(9):1485–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. De Assis S, Hilakivi-Clarke L. Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci. 2006;1089:14–35.

    Article  PubMed  Google Scholar 

  66. Hilakivi-Clarke L, Cho E, Onojafe I, Raygada M, Clarke R. Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol Rep. 1999;6(5):1089–95.

    CAS  PubMed  Google Scholar 

  67. Foster WG, Younglai EV, Boutross-Tadross O, Hughes CL, Wade MG. Mammary gland morphology in Sprague–Dawley rats following treatment with an organochlorine mixture in utero and neonatal genistein. Toxicol Sci. 2004;77(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  68. Su Y, Eason RR, Geng Y, Till SR, Badger TM, Simmen RC. In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis. Carcinogenesis. 2007;28(5):1046–51.

    Article  CAS  PubMed  Google Scholar 

  69. Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, et al. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer. 2004;48(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  70. Bertl E, Bartsch H, Gerhäuser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther. 2006;5(3):575–85.

    Article  CAS  PubMed  Google Scholar 

  71. Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004;64(16):5767–74.

    Article  CAS  PubMed  Google Scholar 

  72. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One. 2012;7(5):e37748.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ziegler RG, Hoover RN, Pike MC, Hildesheim A, Nomura AM, West DW, et al. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst. 1993;85(22):1819–27.

    Article  CAS  PubMed  Google Scholar 

  74. Kakehi Y. Epidemiology and clinical features of prostate cancer in Japan. Nihon Rinsho. 1998;56(8):1969–73.

    CAS  PubMed  Google Scholar 

  75. Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci U S A. 2007;104(36):14460–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bushman JL. Green tea and cancer in humans: a review of the literature. Nutr Cancer. 1998;31(3):151–9.

    Article  CAS  PubMed  Google Scholar 

  77. Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007;7(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  78. Raederstorff DG, Schlachter MF, Elste V, Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003;14(6):326–32.

    Article  CAS  PubMed  Google Scholar 

  79. Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem. 2008;103(2):509–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.

    CAS  PubMed  Google Scholar 

  81. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1 Suppl):223S–8S.

    CAS  PubMed  Google Scholar 

  82. Castro DJ, Yu Z, Löhr CV, Pereira CB, Giovanini JN, Fischer KA, et al. Chemoprevention of dibenzo[a, l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine. Carcinogenesis. 2008;29(8):1581–6.

    Article  CAS  PubMed  Google Scholar 

  83. Yang P, Li H. Epigallocatechin-3-gallate ameliorates hyperglycemia-induced embryonic vasculopathy and malformation by inhibition of Foxo3a activation. Am J Obstet Gynecol. 2010;203(1):75.e1–6.

    Article  CAS  Google Scholar 

  84. Long L, Li Y, Wang YD, He QY, Li M, Cai XD, et al. The preventive effect of oral EGCG in a fetal alcohol spectrum disorder mouse model. Alcohol Clin Exp Res. 2010;34(11):1929–36.

    Article  CAS  PubMed  Google Scholar 

  85. Chen JR, Zhang J, Lazarenko OP, Kang P, Blackburn ML, Ronis MJ, et al. Inhibition of fetal bone development through epigenetic down-regulation of HoxA10 in obese rats fed high-fat diet. FASEB J. 2012;26(3):1131–41.

    Article  CAS  PubMed  Google Scholar 

  86. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Perrine SP, Rudolph A, Faller DV, Roman C, Cohen RA, Chen SJ, et al. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc Natl Acad Sci U S A. 1988;85(22):8540–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Yu Z, Mahadevan B, Löhr CV, Fischer KA, Louderback MA, Krueger SK, et al. Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a, l]pyrene. Carcinogenesis. 2006;27(10):2116–23.

    Article  CAS  PubMed  Google Scholar 

  89. Xia X, Cai H, Qin S, Xu C. Histone acetylase inhibitor curcumin impairs mouse spermiogenesis—an in vitro study. PLoS One. 2012;7(11):e48673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Kapusta L, Haagmans ML, Steegers EA, Cuypers MH, Blom HJ, Eskes TK. Congenital heart defects and maternal derangement of homocysteine metabolism. J Pediatr. 1999;135(6):773–4.

    Article  CAS  PubMed  Google Scholar 

  91. Li DK, Daling JR, Mueller BA, Hickok DE, Fantel AG, Weiss NS. Periconceptional multivitamin use in relation to the risk of congenital urinary tract anomalies. Epidemiology. 1995;6(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  92. Frias AE, Grove KL. Obesity: a transgenerational problem linked to nutrition during pregnancy. Semin Reprod Med. 2012;30(6):472–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Dabelea D, Crume T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes. 2011;60(7):1849–55.

    Article  CAS  PubMed  Google Scholar 

  94. Boqué N, de la Iglesia R, de la Garza AL, Milagro FI, Olivares M, Bañuelos O, et al. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res. 2013;57(8):1473–8.

    Article  PubMed  Google Scholar 

  95. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem. 2009;65(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  96. Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007;9(11):1273–85.

    Article  CAS  PubMed  Google Scholar 

  97. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32(9):1373–9.

    Article  CAS  Google Scholar 

  98. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr. 2009;139(5):919–25.

    Article  CAS  PubMed  Google Scholar 

  99. Campión J, Milagro FI, Martínez JA. Individuality and epigenetics in obesity. Obes Rev. 2009;10(4):383–92.

    Article  PubMed  Google Scholar 

  100. Li S, Tse IM, Li ET. Maternal green tea extract supplementation to rats fed a high-fat diet ameliorates insulin resistance in adult male offspring. J Nutr Biochem. 2012;23(12):1655–60.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the American Institute for Cancer Research.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Li.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Saldanha, S.N. & Tollefsbol, T.O. Impact of Epigenetic Dietary Compounds on Transgenerational Prevention of Human Diseases. AAPS J 16, 27–36 (2014). https://doi.org/10.1208/s12248-013-9538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9538-7

KEY WORDS

Navigation