Skip to main content
Log in

Critical ligand binding reagent preparation/selection: When specificity depends on reagents

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Throughout the life cycle of biopharmaceutical products, bioanalytical support is provided using ligand binding assays to measure the drug product for pharmacokinetic, pharmacodynamic, and immunogenicity studies. The specificity and selectivity of these ligand binding assays are highly dependent on the ligand binding reagents. Thus the selection, characterization, and management processes for ligand binding reagents are crucial to successful assay development and application. This report describes process considerations for selection and characterization of ligand binding reagents that are integral parts of the different phases of assay development. Changes in expression, purification, modification, and storage of the ligand binding reagents may have a profound effect on the ligand binding assay performance. Thus long-term management of the critical ligand binding assay reagents is addressed including suggested characterization criteria that allow ligand binding reagents to be used in as consistent a manner as possible. Examples of challenges related to the selection, modification, and characterization of ligand binding reagents are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porstmann T, Kiessig ST. Enzyme immunoassay techniques.J Immunol Methods. 1992;150:5–21.

    Article  PubMed  CAS  Google Scholar 

  2. Findlay JWA, Smith WC, Lee Lee JW, et al. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective.J Pharm Biol. 2000;21:1249–1273.

    Article  CAS  Google Scholar 

  3. DeSilva B, Smith W, Weiner R, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules.Pharm Res. 2003;20:1885–1900.

    Article  PubMed  CAS  Google Scholar 

  4. Mire-Sluis AR, Barrett YC, Devanarayan V, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products.J Immunol Methods. 2004;289:1–16.

    Article  PubMed  CAS  Google Scholar 

  5. Geng D, Shankar G, Schantz A, Rajadhyaksha M, Davis H, Wagner C. Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies.J Pharm Biol. 2005;39:364–375.

    Article  CAS  Google Scholar 

  6. Smolec J, DeSilva B, Smith W, et al. Bioanalytical method validation for macromolecules in support of pharmacokinetic studies.Pharm Res. 2005;22:1425–1431.

    Article  PubMed  CAS  Google Scholar 

  7. Shankar G, Shores E, Wagner C, Mire-Sluis A. Scientific and regulatory considerations on the immunogenicity of biologics.Trends Biotechnol. 2006;24:274–280.

    Article  PubMed  CAS  Google Scholar 

  8. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products.J Pharma Sci. 2004;93:2184–2204.

    Article  CAS  Google Scholar 

  9. Coleman PM. Structure of antibody-antigen complexes: implications of immune recognition.Adv Immunol. 1988;43:99–132.

    Google Scholar 

  10. Butler JE.Perspectives, Configurations and Principles: Immunochemistry of Solid-phase Immunoassays. Boca Raton, FL: CRC Press; 1991:3–26.

    Google Scholar 

  11. Tijssen P.Laboratory Techniques in Biochemistry and Molecular Biology. San Diego, CA: Elsevier Science Publishers 1985.

    Google Scholar 

  12. Gosling JB, ed.Immunoassays: A Practical Approach. Oxford, UK: Oxford University Press, 2000.

    Google Scholar 

  13. Burns R.Immunochemical Protocols. Totowa, NJ: Humana Press; 2005.

    Google Scholar 

  14. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity.Nature. 1975;256:495–497.

    Article  PubMed  CAS  Google Scholar 

  15. Howard GC, Bethell DR.Basic Methods in Antibody Production and Characterization. Boca Raton, FL: CRC Press; 2001.

  16. Subramanian G.Antibodies. Vol 2. Novel Technologies and Therapeutic Use. New York, NY: Kluwer Academic/Plenum Publishers, 2004.

    Google Scholar 

  17. Bradbury AR, Mark JD. Antibodies from phage antibody libraires.J Immunol. 2004;290:29–49.

    Article  CAS  Google Scholar 

  18. Lipvsek D, Pluckthun AJ. In-vitro protein evolution by ribosome display and mRNA display.Immunol Meth. 2004;290:51–67.

    Article  CAS  Google Scholar 

  19. Konthur Z, Hust M, Dubel S. Perspectives for systematic in vitro antibody generation.Gene. 2005;364:19–29.

    Article  PubMed  CAS  Google Scholar 

  20. Brody EN, Gold LJ. Aptamers as therapeutic and diagnostic agents.J Biotechnol. 2000;74:5–13.

    PubMed  CAS  Google Scholar 

  21. Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain.Nat Biotechnol. 1997;15:772–777.

    Article  PubMed  CAS  Google Scholar 

  22. Engelbienne P.Immune and Receptor Assays in Theory and Practice. Boca Raton, FL: CRC Press; 2000.

    Google Scholar 

  23. Wong SS.Chemistry of Protein Conjugation and Cross-linking. Boca Raton, FL: CRC Press; 2000.

    Google Scholar 

  24. Niemeyer CM.Bioconjugation Protocols: Strategies and Methods. Totowa, NJ: Humana Press; 2004:283.

    Google Scholar 

  25. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms.Genes Dev. 1994;8:133–146.

    Article  PubMed  CAS  Google Scholar 

  26. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop Relat Res. 1998;346:26–37.

    Article  PubMed  Google Scholar 

  27. Webb DJ, Wen J, Karns LR, Kurilla MG, Gonias SL. Localization of the binding site for transforming growth factor-B in human alpha-2-macroglobulin to a 20-kDa peptide that also contains the bait region.J Biol Chem. 1998;273:13339–13346.

    Article  PubMed  CAS  Google Scholar 

  28. Blum WF, Ranke MB. Plasma IGFBP-3 levels as clinical indicators. In: Spencer EM, ed..Modern Concepts of Insulin-Like Growth Factors. New York, NY: Elsevier Science Publishing Co; 1991:381–393.

    Google Scholar 

  29. Harrison D, Celniker A, Reifsnyder D, Sipes D, Schroeder K, Gesundheit N. Measurement of serum insulin-like growth factor binding protein 3 using a two-site ELISA. Abstract 970 presented at: The 74th Endocrine Society Meeting; June 24–27, 1992; San Antonio, TX.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise O'Hara.

Additional information

Published: May 11, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rup, B., O'Hara, D. Critical ligand binding reagent preparation/selection: When specificity depends on reagents. AAPS J 9, 16 (2007). https://doi.org/10.1208/aapsj0902016

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0902016

Keywords

Navigation