Skip to main content

Advertisement

Log in

Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a debilitating movement disorder resulting from a progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum. Molecular cloning studies have identified nearly a dozen genes or loci that are associated with small clusters of mostly early onset and genetic forms of PD. The etiology of the vast majority of PD cases remains unknown, and the precise molecular and biochemical processes governing the selective and progressive degeneration of the nigrostriatal dopaminergic pathway are poorly understood. Current drug therapies for PD are symptomatic and appear to bear little effect on the progressive neurodegenerative process. Studies of postmortem PD brains and various cellular and animal models of PD in the last 2 decades strongly suggest that the generation of proinflammatory and neurotoxic factors by the resident brain immune cells, microglia, plays a prominent role in mediating the progressive neurodegenerative process. This review discusses literature supporting the possibility of modulating the activity of microglia as a neuroprotective strategy for the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkinson J. An essay on the shaking palsy. 1817.J Neuropsychiatry Clin Neurosci. 2002;14:223–236.

    Article  PubMed  Google Scholar 

  2. Goetz CG. Charcot on Parkinson’s disease.Mov Disord. 1986;1:27–32.

    Article  CAS  PubMed  Google Scholar 

  3. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease.Annu Rev Neurosci. 1999;22:123–144.

    Article  CAS  PubMed  Google Scholar 

  4. Langston JW. Parkinson’s disease: current and future challenges.Neurotoxicology. 2002;23:443–450.

    Article  PubMed  Google Scholar 

  5. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects.Nat Rev Genet. 2006;7:306–318.

    Article  CAS  PubMed  Google Scholar 

  6. Cookson MR, Xiromerisiou G, Singleton A. How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease.Curr Opin Neurol. 2005;18:706–711.

    Article  PubMed  Google Scholar 

  7. Zhang Z-X, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai.Lancet. 2005;365:595–597.

    Article  PubMed  Google Scholar 

  8. de Rijk MC, Tzourio C, Breteler MMB, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study.J Neurol Neurosurg Psychiatry. 1997;62:10–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singhal B, Lalkaka J, Sankhla C. Epidemiology and treatment of Parkinson’s disease in India.Parkinsonism Relat Disord. 2003;9:105–109.

    Article  Google Scholar 

  10. del Rio-Hortega P. Art and artifice in the science of histology. 1933.Histopathology. 1993;22:515–525.

    Article  PubMed  Google Scholar 

  11. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS.Trends Neurosci. 1996;19:312–318.

    Article  CAS  PubMed  Google Scholar 

  12. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response.Neurol Res. 2005;27:685–691.

    PubMed  Google Scholar 

  13. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention.J Pharmacol Exp Ther. 2003;304:1–7.

    Article  CAS  PubMed  Google Scholar 

  14. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains.Neurology. 1988;38:1285–1291.

    Article  CAS  PubMed  Google Scholar 

  15. Liu B, Gao HM, Hong JS. Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.Environ Health Perspect. 2003;111:1065–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen H, Zhang SM, Hernán MA, et al. Nonsteroidal antiinflammatory drugs and the risk of Parkinson disease.Arch Neurol. 2003;60:1059–1064.

    Article  PubMed  Google Scholar 

  17. Chen H, Jacobs E, Schwarzschild MA, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease.Ann Neurol. 2005;58:963–967.

    Article  CAS  PubMed  Google Scholar 

  18. Hernan MA, Logroscino G, Garcia Rodriguez LA. Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease.Neurology. 2006;66:1097–1099.

    Article  PubMed  Google Scholar 

  19. O’Callaghan JP, Jr, Miller DB Jr, Reinhard JF, Jr. Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Brain Res. 1990;521:73–80.

    Article  PubMed  Google Scholar 

  20. Francis JW, Von Visger J, Markelonis GJ, Oh TH. Neuroglial responses to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse striatum.Neurotoxicol Teratol. 1995;17:7–12.

    Article  CAS  PubMed  Google Scholar 

  21. Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model.Neurodegeneration. 1996;5:137–143.

    Article  CAS  PubMed  Google Scholar 

  22. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Immunopharmacology. 1998;39:167–180.

    Article  CAS  PubMed  Google Scholar 

  23. Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.Nat Med. 1999;5:1403–1439.

    Article  CAS  PubMed  Google Scholar 

  24. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo.J Neurochem. 2000;74:2213–2216.

    Article  CAS  PubMed  Google Scholar 

  25. Sriram K, Miller DB, O’Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha.J Neurochem. 2006;96:706–718.

    Article  CAS  PubMed  Google Scholar 

  26. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha.FASEB J. 2006;20:670–682.

    Article  CAS  PubMed  Google Scholar 

  27. Akiyama H, McGeer PL. Microglial response to 6-hydroxydopamine-induced substantia nigra lesions.Brain Res. 1989;489:247–253.

    Article  CAS  PubMed  Google Scholar 

  28. Sheng JG, Shirabe S, Nishiyama N, Schwartz JP. Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation.Exp Brain Res. 1993;95:450–456.

    Article  CAS  PubMed  Google Scholar 

  29. Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging.Eur J Neurosci. 2002;15:991–998.

    Article  CAS  PubMed  Google Scholar 

  30. Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system.J Neurochem. 1998;70:1584–1592.

    Article  CAS  PubMed  Google Scholar 

  31. Liu B, Jiang JW, Wilson BC, et al. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide.J Pharmacol Exp Ther. 2000;295:125–132.

    CAS  PubMed  Google Scholar 

  32. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease.J Neurochem. 2002;81:1285–1297.

    Article  CAS  PubMed  Google Scholar 

  33. Ling Z, Zhu Y, Tong CW, Snyder JA, Lipton JW, Carvey PM. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally.Exp Neurol. 2006;199:499–512.

    Article  CAS  PubMed  Google Scholar 

  34. Sherer TB, Betarbet R, Kim JH, Greenamyre JT. Selective microglial activation in the rat rotenone model of Parkinson’s disease.Neurosci Lett. 2003;341:87–90.

    Article  CAS  PubMed  Google Scholar 

  35. Fleming SM, Zhu C, Fernagut PO, et al. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone.Exp Neurol. 2004;187:418–429.

    Article  CAS  PubMed  Google Scholar 

  36. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease.J Neurosci. 2000;20:9207–9214.

    CAS  PubMed  Google Scholar 

  37. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.Neurobiol Dis. 2002;10:119–127.

    Article  CAS  PubMed  Google Scholar 

  38. Cicchetti F, Lapointe N, Roberge-Tremblay A, et al. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats.Neurobiol Dis. 2005;20:360–371.

    Article  CAS  PubMed  Google Scholar 

  39. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science. 1983;219:979–980.

    Article  CAS  PubMed  Google Scholar 

  40. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc Natl Acad Sci USA. 1983;80:4546–4550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weller C, Oxlade N, Dobbs SM, Dobbs RJ, Charlett A, Bjarnason IT. Role of inflammation in gastrointestinal tract in aetiology and pathogenesis of idiopathic parkinsonism.FEMS Immunol Med Microbiol. 2005;44:129–135.

    Article  CAS  PubMed  Google Scholar 

  42. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia.J Neurosci. 2000;20:6309–6316.

    CAS  PubMed  Google Scholar 

  43. Herrera AJ Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system.Neurobiol Dis. 2000;7:429–447.

    Article  CAS  PubMed  Google Scholar 

  44. Iravani MM, Leung CC, Sadeghian M, Haddon CO, Rose S, Jenner P. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation.Eur J Neurosci. 2005;22:317–330.

    Article  PubMed  Google Scholar 

  45. Greenamyre JT, Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat Neurosci. 2000;3:1301–1306.

    Article  PubMed  Google Scholar 

  46. Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats.Behav Brain Res. 2002;136:317–324.

    Article  CAS  PubMed  Google Scholar 

  47. Hoglinger GU, Feger J, Prigent A, et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats.J Neurochem. 2003;84:491–502.

    Article  CAS  PubMed  Google Scholar 

  48. Gao HM, Hong JS, Zhang W, Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons.J Neurosci. 2002;22:782–790.

    CAS  PubMed  Google Scholar 

  49. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss.Brain Res. 1999;823:1–10.

    Article  CAS  PubMed  Google Scholar 

  50. Ossowska K, Wardas J, Smialowska M, et al. A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson’s disease?Eur J Neurosci. 2005;22:1294–1304.

    Article  CAS  PubMed  Google Scholar 

  51. Soleo L, Defazio G, Scarselli R, Zefferino R, Livrea P, Foa V. Toxicity of fungicides containing ethylene-bis-dithiocarbamate in serumless dissociated, mesencephalic-striatal primary coculture.Arch Toxicol. 1996;70:678–682.

    Article  CAS  PubMed  Google Scholar 

  52. Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA. Redox cycling of the herbicide paraquat in microglial cultures.Brain Res Mol Brain Res. 2005;134:52–56.

    Article  CAS  PubMed  Google Scholar 

  53. Wu XF, Block ML, Zhang W, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity.Antioxid Redox Signal. 2005;7:654–661.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Wang Y, Kovacs M, Jin J, Zhang J. Microglial activation induced by neurodegeneration: a proteomic analysis.Mol Cell Proteomics. 2005;4:1471–1479.

    Article  CAS  PubMed  Google Scholar 

  55. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.Ann Neurol. 1999;46:598–605.

    Article  CAS  PubMed  Google Scholar 

  56. McGeer, PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration.Ann Neurol. 2003;54:599–604.

    Article  CAS  PubMed  Google Scholar 

  57. Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, et al. Evidence of active microglia in substantia nigra, pars compacta of parkinsonian monkeys 1 year after MPTP exposure.Glia. 2004;46:402–409.

    Article  PubMed  Google Scholar 

  58. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. Innate and adaptive immune responses of the central nervous system.Crit Rev Immunol. 2006;26:149–188.

    Article  CAS  PubMed  Google Scholar 

  59. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses.Brain Behav Immun. 2006;[Epub ahead of print].

  60. Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients.Neurosci Lett. 1994;180:147–150.

    Article  CAS  PubMed  Google Scholar 

  61. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4 IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease.Neurosci Lett. 1996;211:13–16.

    Article  CAS  PubMed  Google Scholar 

  62. Blum-Degena D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo, Parkinson’s disease patients.Neurosci Lett. 1995;202:17–20.

    Article  Google Scholar 

  63. Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells.J Neurosci. 1999;19:3440–3447.

    CAS  PubMed  Google Scholar 

  64. Muller T, Blum-Degen D, Przuntek H, Kuhn W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease.Acta Neurol Scand. 1998;98:142–144.

    Article  CAS  PubMed  Google Scholar 

  65. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients.Neurosci Lett. 1994;165:208–210.

    Article  CAS  PubMed  Google Scholar 

  66. Hunot S, Boissiere F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease.Neuroscience. 1996;72:355–363.

    Article  CAS  PubMed  Google Scholar 

  67. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2.Mol Cell Neurosci. 2000;16:724–739.

    Article  CAS  PubMed  Google Scholar 

  68. Dexter D, Carter C, Agid F, et al. Lipid peroxidation as cause of nigral cell death in Parkinson’s disease.Lancet. 1986;328:639–640.

    Article  Google Scholar 

  69. Pall HS, Williams AC, Blake DR, Winyard P, Lunec J. Lipid peroxidation and Parkinson’s disease.Lancet. 1986;328:870–871.

    Article  Google Scholar 

  70. Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J Neurochem. 1989;52:381–389.

    Article  CAS  PubMed  Google Scholar 

  71. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it.Ann Neurol. 1992;32:804–812.

    Article  CAS  PubMed  Google Scholar 

  72. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J Neurochem. 1991;56:978–982.

    Article  CAS  PubMed  Google Scholar 

  73. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia.Brain. 1991;114:1953–1975.

    Article  PubMed  Google Scholar 

  74. Adams JD, Jr, Odunze IN. Oxygen free radicals and Parkinson’s disease.Free Radic Biol Med. 1991;10:161–169.

    Article  CAS  PubMed  Google Scholar 

  75. Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group.Ann Neurol. 1992;32:S82-S87.

    Article  CAS  PubMed  Google Scholar 

  76. Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia.Ann Neurol. 1994;36:348–355.

    Article  CAS  PubMed  Google Scholar 

  77. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD. Glutathione-related enzymes in brain in Parkinson’s disease.Ann Neurol. 1994;36:356–361.

    Article  CAS  PubMed  Google Scholar 

  78. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P. Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease.J Neurochem. 1990;54:823–827.

    Article  CAS  PubMed  Google Scholar 

  79. Keeney PM, Jr, Xie J, Jr, Capaldi RA, Jr, Bennett JP, Jr. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled.J Neurosci. 2006;26:5256–5264.

    Article  CAS  PubMed  Google Scholar 

  80. Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles.Biochem Biophys Res Commun. 1990;170:1049–1055.

    Article  CAS  PubMed  Google Scholar 

  81. Perier C, Tieu K, Guegan C, et al. Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage.Proc Natl Acad Sci USA. 2005;102: 19126–19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mandel S, Grunblatt E, Youdim M. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson’s disease.J Neural Transm Suppl. 2000;60:117–124.

    Google Scholar 

  83. Delgado M, Ganea D. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation.FASEB J. 2003;17:944–946.

    CAS  PubMed  Google Scholar 

  84. Ciesielska A, Joniec I, Przybylkowski A, et al. Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson’s disease.Acta Neurobiol Exp (Wars). 2003;63:117–126.

    Google Scholar 

  85. Hebert G, Arsaut J, Dantzer R, Demotes-Mainard J. Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin.Neurosci Lett. 2003;349:191–195.

    Article  CAS  PubMed  Google Scholar 

  86. Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.J Neurosci. 2002;22:1763–1771.

    CAS  PubMed  Google Scholar 

  87. Teismann P, Tieu K, Choi DK, et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration.Proc Natl Acad Sci USA. 2003;100:5473–5478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hunot S, Vila M, Teismann P, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease.Proc Natl Acad Sci USA. 2004;101:665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease.J Neuroinflammation. 2006;3:E6-serial online.

    Article  CAS  Google Scholar 

  90. Wu DC, Teismann P, Tieu K, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease.Proc Natl Acad Sci USA. 2003;100:6145–6150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang W, Wang T, Qin L, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase.FASEB J. 2004;18:589–591.

    CAS  PubMed  Google Scholar 

  92. Depino AM, Earl C, Kaczmarczyk E, et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease.Eur J Neurosci. 2003;18:2731–2742.

    Article  PubMed  Google Scholar 

  93. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T. Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-alpha induction.Neurosci Lett. 1999;268:101–104.

    Article  CAS  PubMed  Google Scholar 

  94. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T. Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506.Neurosci Lett. 2000;289:165–168.

    Article  CAS  PubMed  Google Scholar 

  95. Bathwal MK, Srivastava N, Dikshit M. Role of nitric oxide in a progressive neurodegeneration model of Parkinson’s disease in the rat.Redox Rep. 2001;6:297–302.

    Article  Google Scholar 

  96. Singh S, Das T, Ravindran A, et al. Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease.Redox Rep. 2005;10:103–109.

    Article  CAS  PubMed  Google Scholar 

  97. Ruano D, Revilla E, Paz Gavilan M, et al. Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection.Neuroscience. 2006;140:1157–1168.

    Article  CAS  PubMed  Google Scholar 

  98. Ling Z, Gayle DA, Ma SY, et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain.Mov Disord. 2002;17:116–124.

    Article  PubMed  Google Scholar 

  99. Arimoto T, Bing G. Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration.Neurobiol Dis. 2003;12:35–45.

    Article  CAS  PubMed  Google Scholar 

  100. Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration.Neuroscience. 2002;110:49–58.

    Article  CAS  PubMed  Google Scholar 

  101. Blais V, Turrin NP, Rivest S. Cyclooxygenase 2 (COX-2) inhibition increase the inflammatory response in the brain during systemic immune stimuli.J Neurochem. 2005;95:1563–1574.

    Article  CAS  PubMed  Google Scholar 

  102. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease.FASEB J. 2002;16:1474–1476.

    CAS  PubMed  Google Scholar 

  103. Leng A, Mura A, Feldon J, Ferger B. Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson’s disease.Neurosci Lett. 2005;375:107–111.

    Article  CAS  PubMed  Google Scholar 

  104. Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum.J Neurochem. 2004;89:822–833.

    Article  CAS  PubMed  Google Scholar 

  105. Rousselet E, Callebert J, Parain K, et al. Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP.Exp Neurol. 2002;177:183–192.

    Article  CAS  PubMed  Google Scholar 

  106. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S. Influence of interleukin-1 beta gene polymorphisms on age-at-onset of sporadic Parkinson’s disease.Neurosci Lett. 2000;284:73–76.

    Article  CAS  PubMed  Google Scholar 

  107. McGeer PL, Yasojima K, McGeer EG. Association of interleukin-1 beta polymorphisms with idiopathic Parkinson’s disease.Neurosci Lett. 2002;326:67–69.

    Article  CAS  PubMed  Google Scholar 

  108. Schulte T, Schols L, Muller T, Woitalla D, Berger K, Kruger R. Polymorphisms in the interleukin-1 alpha and beta genes and the risk for Parkinson’s disease.Neurosci Lett. 2002;326:70–72.

    Article  CAS  PubMed  Google Scholar 

  109. Mattila KM, Rinne JO, Lehtimaki T, Roytta M, Ahonen JP, Hurme M. Association of an interleukin 1B gene polymorphism (−511) with Parkinson’s disease in Finnish patients.J Med Genet. 2002:39:400–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishimura M, Kuno S, Kaji R, Yasuno K, Kawakami H. Glutathione-S-transferase-1 and interleukin-1 beta gene polymorphisms in Japanese patients with Parkinson’s disease.Mov Disord. 2005;20:901–902.

    Article  PubMed  Google Scholar 

  111. Sugama S, Wirz SA, Barr AM, Conti B, Bartfai T, Shibasaki T. Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-pheny1-1,2,3,6-tetrahydropyridine treatment.Neuroscience. 2004;128:451–458.

    Article  CAS  PubMed  Google Scholar 

  112. Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice.J Neurochem. 2002;83:167–175.

    Article  CAS  PubMed  Google Scholar 

  113. Van Snick J. Interleukin-6: an overview.Annu Rev Immunol. 1990:8:253–278.

    Article  PubMed  Google Scholar 

  114. Itzhak Y, Martin JL, Ali SF. Methamphetamine-and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.Synapse. 1999;34:305–312.

    Article  CAS  PubMed  Google Scholar 

  115. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity.Proc Natl Acad Sci USA. 1996;93:4565–4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hantraye P, Brouillet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons.Nat Med. 1996;2:1017–1021.

    Article  CAS  PubMed  Google Scholar 

  117. Matthews RT, Yang L, Beal MF. S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity.Exp Neurol. 1997;143:282–286.

    Article  CAS  PubMed  Google Scholar 

  118. Klivenyi P, Andreassen OA, Ferrante RJ, Lancelot E, Reif D, Beal MF. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity.Neuroreport. 2000;11:1265–1268.

    Article  CAS  PubMed  Google Scholar 

  119. Royland JE, Delfani K, Langston JW, Janson AM, Di Monte DA. 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced ATP loss in the mouse striatum.Brain Res. 1999;839:41–48.

    Article  CAS  PubMed  Google Scholar 

  120. Castagnoli K, Jr, Palmer S, Jr, Castagnoli N, Jr. Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity.Neurobiology (Bp). 1999;7:135–149.

    CAS  Google Scholar 

  121. Muramatsu Y, Kurosaki R, Mikami T, et al. Therapeutic effect of neuronal nitric oxide synthase inhibitor (7-nitroindazole) against MPTP neurotoxicity in mice.Metab Brain Dis. 2002;17:169–182.

    Article  CAS  PubMed  Google Scholar 

  122. Watanabe H, Muramatsu Y, Kurosaki R, et al. Piotective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: an immunohistological study.Eur Neuropsychopharmacol. 2004;14:93–104.

    Article  CAS  PubMed  Google Scholar 

  123. Barthwal MK, Srivastava N, Dikshit M. Role of nitric oxide in a progressive neurodegeneration model of Parkinson’s disease in the rat.Redox Rep. 2001;6:297–302.

    Article  CAS  PubMed  Google Scholar 

  124. Singh S, Das T, Ravindran A, et al. Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease.Redox Rep. 2005;10:103–109.

    Article  CAS  PubMed  Google Scholar 

  125. Lo HS, Hogan EL, Soong BW. 6′-flanking region polymorphism of the neuronal nitric oxide synthase gene with Parkinson’s disease in Taiwan.J Neurol Sci. 2002;194:11–13.

    Article  CAS  PubMed  Google Scholar 

  126. Levecque C, Elbaz A, Clavel J, et al. Association between Parkinson’s disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study.Hum Mol Genet. 2003;12:79–86.

    Article  CAS  PubMed  Google Scholar 

  127. Feng ZH, Wang TG, Li DD, et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyll, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra.Neurosci Lett. 2002;329:354–358.

    Article  CAS  PubMed  Google Scholar 

  128. Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease.Synapse. 2001;39:167–174.

    Article  CAS  PubMed  Google Scholar 

  129. Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease.J Neuroinflammation. 2004;1:1–6.

    Article  Google Scholar 

  130. Aubin N, Curet O, Deffois A, Carter C. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice.J Neurochem. 1998;71:1635–1642.

    Article  CAS  PubMed  Google Scholar 

  131. Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice.Naunyn Schmiedebergs Arch Pharmacol. 1999;360:256–261.

    Article  CAS  PubMed  Google Scholar 

  132. Mohanakumar KP, Muralikrishnan D, Thomas B. Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.Brain Res. 2000;864:281–290.

    Article  CAS  PubMed  Google Scholar 

  133. Kurkowska-Jastrzebska I, Babiuch M, Joniec I, Przybylkowski A, Czlonkowski A, Czlonkowska A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice.Int Immunopharmacol. 2002;2:1213–1218.

    Article  CAS  PubMed  Google Scholar 

  134. Lambeth JD. NOX enzymes and the biology of reactive oxygen.Nat Rev Immunol. 2004;4:181–189.

    Article  CAS  PubMed  Google Scholar 

  135. Babior BM. NADPH oxidase.Curr Opin Immunol. 2004;16:42–47.

    Article  CAS  PubMed  Google Scholar 

  136. Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation.Biochem Soc Trans. 1993;21:330–334.

    Article  CAS  PubMed  Google Scholar 

  137. Ischiropoulos H, Beckman JS. Oxidative stress and nitration in neurodegeneration: cause, effect, or association?.J Clin Invest. 2003;111:163–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.Proc Natl Acad Sci USA. 2001;98:14669–14674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cornet S, Spinnewyn B, Delaflotte S, et al. Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline.Eur J Pharmacol. 2004;505:111–119.

    Article  CAS  PubMed  Google Scholar 

  140. Yang L, Sugama S, Chirichigno JW, et al. Minocycline enhances MPTP toxicity to dopaminergic neurons.J Neurosci Res. 2003;74:278–285.

    Article  CAS  PubMed  Google Scholar 

  141. Diguet E, Fernagut PO, Wei X, et al. Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease.Eur J Neurosci. 2004;19:3266–3276.

    Article  PubMed  Google Scholar 

  142. He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum.Brain Res. 2001;909:187–193.

    Article  CAS  PubMed  Google Scholar 

  143. Quintero EM, Willis L, Singleton R, et al. Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease.Brain Res. 2006;1093:198–207.

    Article  CAS  PubMed  Google Scholar 

  144. Tomas-Camardiel M, Rite I, Herrera AJ, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system.Neurobiol Dis. 2004;16:190–201.

    Article  CAS  PubMed  Google Scholar 

  145. Delgado M, Ganea D. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation.FASEB J. 2003;17:944–946.

    CAS  PubMed  Google Scholar 

  146. Delgado M, Ganea D. Vasoactive intestinal peptide inhibits IL-8 production in human monocytes by downregulating nuclear factor kappaB-dependent transcriptional activity.Biochem Biophys Res Commun. 2003;302:275–283.

    Article  CAS  PubMed  Google Scholar 

  147. Tuncel N, Sener E, Cerit C, et al. Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson’s disease model in rats: brain microdialysis, behavior, and microscopy.Peptides. 2005;26:827–836.

    Article  CAS  PubMed  Google Scholar 

  148. Lehrke M, Lazar MA. The many faces of PPARgamma.Cell. 2005;123:993–999.

    Article  CAS  PubMed  Google Scholar 

  149. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease.J Neurochem. 2002;82:615–624.

    Article  CAS  PubMed  Google Scholar 

  150. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation.J Neurochem. 2004;88:494–501.

    Article  CAS  PubMed  Google Scholar 

  151. Sharp BM. Multiple opioid receptors on immune cells modulate intracellular signaling.Brain Behav Immun. 2006;20:9–14.

    Article  CAS  PubMed  Google Scholar 

  152. Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation.J Pharmacol Exp Ther. 2000;293:607–617.

    CAS  PubMed  Google Scholar 

  153. Chang RC, Rota C, Glover RE, Mason RP, Hong JS. A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy.Brain Res. 2000:854:224–229.

    Article  CAS  PubMed  Google Scholar 

  154. Liu Y, Qin L, Wilson BC, An L, Hong JS, Liu B. Inhibition by naloxone stereoisomers of beta-amyloid peptide (1–42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons.J Pharmacol Exp Ther. 2002;302:1212–1219.

    Article  CAS  PubMed  Google Scholar 

  155. Lu X, Bing G, Hagg T. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats.Neuroscience. 2000;97:285–291.

    Article  CAS  PubMed  Google Scholar 

  156. Liu B, Du L, Kong LY, et al. Reduction by naloxone of lipopolysaccharide-induced neurotoxicity in mouse cortical neuron-glia co-cultures.Neuroscience. 2000;97:749–756.

    Article  CAS  PubMed  Google Scholar 

  157. Wang V, Chia LG, Ni DR, et al. Effects of the combined treatment of naloxone and indomethacin on catecholamines and behavior after intranigral lipopolysaccharide injection.Neurochem Res. 2004;29:341–346.

    Article  CAS  PubMed  Google Scholar 

  158. Liu Y, Qin L, Li G, et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.J Pharmacol Exp Ther. 2003;305:212–218.

    Article  CAS  PubMed  Google Scholar 

  159. Vaglini F, Pardini C, Bonuccelli U, Maggio R, Corsini GU. Dextromethorphan prevents the diethyldithiocarbamate enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice.Brain Res. 2003;973:298–302.

    Article  CAS  PubMed  Google Scholar 

  160. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.Brain Res. 2005;1050:190–198.

    Article  CAS  PubMed  Google Scholar 

  161. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain.Neuroscience. 1990;39:151–170.

    Article  CAS  PubMed  Google Scholar 

  162. Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity.Neuroscience. 2000;96:195–203.

    Article  CAS  PubMed  Google Scholar 

  163. Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy.Mov Disord. 2006;21:89–93.

    Article  PubMed  Google Scholar 

  164. Trojanowski JQ, Lee VM. Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses.Neurotoxicology. 2002;23:457–460.

    Article  CAS  PubMed  Google Scholar 

  165. Gandhi S, Wood NW. Molecular pathogenesis of Parkinson’s disease.Hum Mol Genet. 2005;14:2749–2755.

    Article  CAS  Google Scholar 

  166. Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease.Antioxid Redox Signal. 2005;7:685–693.

    Article  CAS  PubMed  Google Scholar 

  167. McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease.Neurobiol Aging. 2006;27:530–545.

    Article  CAS  PubMed  Google Scholar 

  168. Steindler DA, Pincus DW. Stem cells and neuropoiesis in the adult human brain.Lancet. 2002;359:1047–1054.

    Article  CAS  PubMed  Google Scholar 

  169. Zigmond MJ, Hastings TG, Perez RG. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity?Parkinsonism Relat Disord. 2002;8:389–393.

    Article  PubMed  Google Scholar 

  170. Smith AD, Zigmond MJ. Can the brain be protected through exercise? Lessons from an animal model of parkinsonism.Exp Neurol. 2003;184:31–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Published: September 29, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J 8, 69 (2006). https://doi.org/10.1208/aapsj080369

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080369

Keywords

Navigation