Skip to main content

Advertisement

Log in

In vivo microdialysis for PK and PD studies of anticancer drugs

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In vivo microdialysis technique has become one of the major tools to sample endogenous and exogenous substances in extracellular spaces. As a well-validated sampling technique, microdialysis has been frequently employed for quantifying drug disposition at the desired target in both preclinical and clinical settings. This review addresses general methodological considerations critical to performing microdialysis in tumors, highlights selected preclinical and clinical studies that characterized drug disposition in tumors by the use of microdialysis, and illustrates the potential application of microdialysis in the assessment of tumor response to cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galmarini CM, Galmarini FC. Multidrug resistance in cancer therapy: role of the microenvironment.Curr Opin Investig Drugs. 2003;4:1416–1421.

    PubMed  CAS  Google Scholar 

  2. Hryniuk WM. The importance of dose intensity in the outcome of chemotherapy. In:Important Adv Oncol. 1988:121–141.

  3. Masson E, Zamboni WC. PK optimisation of cancer chemotherapy: effect on outcomes.Clin Pharmacokinet. 1997;32:324–343.

    Article  PubMed  CAS  Google Scholar 

  4. Yuan F. Transvascular drug delivery in solid tumors.Semin Radiat Oncol. 1998;8:164–175.

    Article  PubMed  CAS  Google Scholar 

  5. Jain RK. Delivery of molecular and cellular medicine to solid tumors.Adv Drug Deliv Rev., 2001;46:149–168.

    Article  PubMed  CAS  Google Scholar 

  6. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors.Cancer Res. 2004;64:3731–3736.

    Article  PubMed  CAS  Google Scholar 

  7. Müller M, Mader RM, Steiner B, et al. 5-fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients.Cancer Res. 1997;57:2598–2601.

    PubMed  Google Scholar 

  8. Hunz M, Jetter A, Wilde S, et al. Plasma and tissue PKs of epirubicin in nine patients with primary breast cancer.Eur J Clin Pharmacol. 2001;57:A31.

    Article  Google Scholar 

  9. Garimella TS, Ross DD, Eiseman JL, et al. Plasma PKs and tissue distribution of the breast cancer resistance protein (BCRP/ABCG2) inhibitor fumitremorgin C in SCID mice bearing T8 tumors.Cancer Chemother Pharmacol. 2005;55:101–109.

    Article  PubMed  CAS  Google Scholar 

  10. Meikle SR, Matthews JC, Brock CS, et al. PK assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study.Cancer Chemother Pharmacol. 1998;42:183–193.

    Article  PubMed  CAS  Google Scholar 

  11. Fischman AJ, Alpert NM, Babich JW, Rubin RH. The role of positron emission tomography in PK analysis.Drug Metab Rev. 1997;29:923–956.

    Article  PubMed  CAS  Google Scholar 

  12. Jynge P, Skjetne T, Gribbestad I, et al., In vivo tissue PKs by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans.Clin Pharmacol Ther. 1990;48:481–489.

    Article  PubMed  CAS  Google Scholar 

  13. Artemov D, Solaiyappan M, Bhujwalla ZM. Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors.Cancer Res. 2001;61:3039–3044.

    PubMed  CAS  Google Scholar 

  14. Benveniste H, Huttemeier PC. Microdialysis—theory and application.Prog Neurobiol. 1990;35:195–215.

    Article  PubMed  CAS  Google Scholar 

  15. Ungerstedt U. Microdialysis—principles and applications for studies in animals and man.J Intern Med. 1991;230:365–373.

    Article  PubMed  CAS  Google Scholar 

  16. Benveniste H. Brain microdialysis.J Neurochem. 1989;52:1667–1679.

    Article  PubMed  CAS  Google Scholar 

  17. Elmquist WF, Sawchuk RJ. Application of microdialysis in PK studies.Pharm Res. 1997;14:267–288.

    Article  PubMed  CAS  Google Scholar 

  18. Garrison KE, Pasas SA, Cooper JD, Davies MI. A review of membrane sampling from biological tissues with applications in PKs, metabolism and PDs.Eur J Pharm Sci. 2002;17:1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Chu J, Gallo JM. Application of microdialysis to characterize drug disposition in tumors.Adv Drug Deliv Rev. 2000;45:243–253.

    Article  PubMed  CAS  Google Scholar 

  20. Mader RM, Schrolnberger C, Rizovski B, et al. Penetration of capecitabine and its metabolites into malignant and healthy tissues of patients with advanced breast cancer.Br J Cancer. 2003;88:782–787.

    Article  PubMed  CAS  Google Scholar 

  21. Brunner M, Muller M. Microdialysis: an in vivo approach for measuring drug delivery in oncology.Eur J Clin Pharmacol. 2002;58:227–234.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson RD, Justice JB. Model studies for brain dialysis.Brain Res Bull. 1983;10:567–571.

    Article  PubMed  CAS  Google Scholar 

  23. Ungerstedt U. Measurement of transmitter release by intracerebral dialysis. In: Marsden CA, ed.Measurement of Neurotransmitter Release In Vivo. Chichester, UK: John Wiley & Sons; 1984:81–105.

    Google Scholar 

  24. Ståhle L. On mathematical models of microdialysis: geometry, steady-state models, recovery and probe radius.Adv Drug Deliv Rev. 2000;45:149–167.

    Article  PubMed  Google Scholar 

  25. Lönnroth P, Jansson P, Smith U. A microdialysis method allowing characterization of intercellular water space in humans.Am J Physiol. 1987;253:E228-E231.

    PubMed  Google Scholar 

  26. Ståhle L. Drug distribution studies with microdialysis. I. Tissue dependent difference in recovery between caffeine and theophylline.Life Sci. 1991;49:1835–1842.

    Article  PubMed  Google Scholar 

  27. Larsson CI. The use of an “internal standard” for control of the recovery in microdialysis.Life Sci. 1991;49:PL73-PL78.

    Article  PubMed  CAS  Google Scholar 

  28. Menacherry S Jr, Hubert W Jr. Justice JB Jr. In vivo calibration of microdialysis probes for exogenous compounds.Anal Chem 1992;64:577–583.

    Article  PubMed  CAS  Google Scholar 

  29. Yokel RA, Allen DD, Burgio DE, McNamara PJ. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis.J Pharmacol Toxicol Methods. 1992;27:135–142.

    Article  PubMed  CAS  Google Scholar 

  30. Van Belle K, Dzeka T, Sarre S, Ebinger G, Michotte Y. In vitro and in vivo microdialysis calibration for the measurement of carbamazepine and its metabolites in rat brain tissue using the internal reference technique.J Neurosci Methods 1993;49:167–173.

    Article  PubMed  Google Scholar 

  31. Wang Y, Wong SL, Sawchuk RJ. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus.Pharm Res. 1993;10:1411–1419.

    Article  PubMed  CAS  Google Scholar 

  32. Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G. Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods.J Pharmacol Toxicol Methods. 1995;33:11–16.

    Article  PubMed  Google Scholar 

  33. Clement R, Malinovsky JM, Dollo G, Le Corre P, Chevanne F, Le Verge R. In vitro and in vivo microdialysis calibration using retrodialysis for the study of the cerebrospinal distribution of bupivacaine.J Pharm Biomed Anal 1998;17:665–670.

    Article  PubMed  CAS  Google Scholar 

  34. Ståhle L. Drug distribution studies with microdialysis. I. Tissue dependent difference in recovery between caffeine and theophylline.Life Sci. 1991;49:1835–1842.

    Article  PubMed  Google Scholar 

  35. Stenken JA. Methods and issues in microdialysis calibration.Anal Chim Acta. 1999;379:337–358.

    Article  CAS  Google Scholar 

  36. Chaurasia CS. In vivo microdialysis sampling: theory and applications.Biomed Chromatogr. 1999;13:317–332.

    Article  PubMed  CAS  Google Scholar 

  37. Jacobson I, Sandberg M, Hamberger A. Mass transfer in brain dialysis devices—a new method for the estimation of extracellular amino acids concentration.J Neurosci Methods. 1985;15:263–268.

    Article  PubMed  CAS  Google Scholar 

  38. Trickler WJ, Miller DW. Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules.J Pharm Sci. 2003;92:1419–1427.

    Article  PubMed  CAS  Google Scholar 

  39. Dabrosin C, Margetts PJ, Gauldie J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer.Int J Cancer. 2003;107:535–540.

    Article  PubMed  CAS  Google Scholar 

  40. Sjogren F, Svensson C, Anderson C. Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis.Br J Dermatol. 2002;146:375–382.

    Article  PubMed  CAS  Google Scholar 

  41. Rosdahl H, Ungerstedt U, Henriksson J. Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid.Acta Physiol Scand. 1997;159:261–262.

    Article  PubMed  CAS  Google Scholar 

  42. Ault JM, Riley CM, Meltzer NM, Lunte CE. Dermal microdialysis sampling in vivo.Pharm Res. 1994;11:1631–1639.

    Article  PubMed  CAS  Google Scholar 

  43. Davies MI, Lunte CE. Microdialysis sampling for hepatic metabolism studies: impact of microdialysis probe design and implantation technique on liver tissue.Drug Metab Dispos. 1995;23:1072–1079.

    PubMed  CAS  Google Scholar 

  44. Palsmeier RK, Lunte CE. Microdialysis sampling of tumors for study of the metabolism of antineoplastic agents.Cancer Bull. 1994;46:58–66.

    Google Scholar 

  45. Westergren I, Nystrom B, Hamberger A, Johansson BB. Intracerebral dialysis and the blood-brain barrier.J Neurochem. 1995;64:229–234.

    Article  PubMed  CAS  Google Scholar 

  46. Morgan ME, Singhal D, Anderson BD. Quantitative assessment of blood-brain barrier damage during microdialysis.J Pharmacol Exp Ther. 1996;277:1167–1176.

    PubMed  CAS  Google Scholar 

  47. Groothuis DR, Ward S, Schlageter KE, et al. Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes.Brain Res. 1998;803:218–230.

    Article  PubMed  CAS  Google Scholar 

  48. Joukhadar C, Klein N, Mader RM, et al. Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma.Cancer. 2001;92:2190–2196.

    Article  PubMed  CAS  Google Scholar 

  49. Johansen MJ, Thapar N, Newman RA, Madden T. Use of microdialysis to study platinum anticancer agent PKs in preclinical models.J Exp Ther Oncol. 2002;2:163–173.

    Article  PubMed  CAS  Google Scholar 

  50. Zamboni WC, Gervais AC, Egorin MJ, et al. Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin.Clin Cancer Res. 2002;8:2992–2999.

    PubMed  CAS  Google Scholar 

  51. Dukic SF, Kaltenbach ML, Heurtaux T, Hoizey G, Lallemand A, Vistelle R. Influence of C6 and CNS1 brain tumors on methotrexate PKs in plasma and brain tissue.J Neurooncol. 2004;67:131–138.

    Article  PubMed  Google Scholar 

  52. Leggas M, Zhuang Y, Welden J, Self Z, Waters CM, Stewart CF. Microbore HPLC method with online microdialysis for measurement of topotecan lactone and carboxylate in murine CitCSF.J Pharm Sci. 2004;93:2284–2295.

    Article  PubMed  CAS  Google Scholar 

  53. Tokunaga Y, Nakashima M, Sasaki H, et al. Local distribution into brain tumor and PKs of 4-pyridoxate diammine hydroxy platinum, a novel cisplatin derivative, after intracarotid administration in rats with 9L malignant glioma: simultaneous brain microdialysis study.Biol Pharm Bull. 2000;23:1491–1496.

    PubMed  CAS  Google Scholar 

  54. Zamboni WC, Gervais AC, Egorin MJ, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumors model of melanoma.Cancer Chemother Pharmacol. 2004;53:329–336.

    Article  PubMed  CAS  Google Scholar 

  55. Ma J, Pulfer S, Li S, Chu J, Reed K, Gallo JM. PD-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470.Cancer Res. 2001;61:5491–5498.

    PubMed  CAS  Google Scholar 

  56. Ma J, Li S, Reed K, Guo P, Gallo JM. PD-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models.J Pharmacol Exp Ther. 2003;305:833–839.

    Article  PubMed  CAS  Google Scholar 

  57. Harrington KJ, Lewanski CR, Northcote AD, et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer.Ann Oncol. 2001;12:493–496.

    Article  PubMed  CAS  Google Scholar 

  58. Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats.Cancer Chemother Pharmacol. 1996;38:499–507.

    Article  PubMed  CAS  Google Scholar 

  59. Devineni D, Klein-Szanto A, Gallo JM. Uptake of temozolomide in a rat glioma model in the presence and absence of the angiogenesis inhibitor TNP-470.Cancer Res. 1996;56:1983–1987.

    PubMed  CAS  Google Scholar 

  60. Teicher BA, Dupuis NP, Robinson MF, Emi Y, Goff DA. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma.Oncol Res. 1995;7:237–243.

    PubMed  CAS  Google Scholar 

  61. Tegeder I, Brautigam L, Seegel M, et al. Cisplatin tumor concentrations after intra-arterial cisplatin infusion or embolization in patients with oral cancer.Clin Pharmacol Ther. 2003;73:417–426.

    Article  PubMed  CAS  Google Scholar 

  62. Joukhadar C, Klein N, Mader RM, et al. Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma.Cancer. 2001;92:2190–2196.

    Article  PubMed  CAS  Google Scholar 

  63. Ekstrom PO, Andersen A, Saeter G, Giercksky KE, Slordal L. Continuous intratumoral microdialysis during high-dose methotrexate therapy in a patient with malignant fibrous histiocytoma of the femur: a case report.Cancer Chemother Pharmacol. 1997;39:267–272.

    PubMed  CAS  Google Scholar 

  64. Müller M, Brunner M, Schmid R, et al. Intestitials methotrexate kinetics in primary breast cancer lesions.Cancer Res. 1998;58:2982–2985.

    PubMed  Google Scholar 

  65. Schüller J, Cassidy J, Dumont E, et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients.Cancer Chemother Pharmacol. 2000;45:291–297.

    Article  PubMed  Google Scholar 

  66. Abe R, Akiyoshi T, Baba T. Inactivation of cisdiamminedichloroplatinum (II) in blood by sodium thiosulfate.Oncology, 1990;47:65–69.

    Article  PubMed  CAS  Google Scholar 

  67. Zamboni WC, Houghton PJ, Hulstein JL, et al. Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines.Cancer Chemother Pharmacol. 1999;43:269–276.

    Article  PubMed  CAS  Google Scholar 

  68. Gallo JM, Vicini P, Orlansky A, et al. PK model-predicted anticancer drug concentration in human tumors.Clin Cancer Res. 2004;10:8048–8058.

    Article  PubMed  CAS  Google Scholar 

  69. Castejon AM, Paez X, Hernandez L, Cubeddu LX. Use of intravenous microdialysis to monitor changes in serotonin release and metabolism induced by cisplatin in cancer patients: comparative effects of granisertron and ondansetron.J Pharmacol Exp Ther.1999;291:960–966.

    PubMed  CAS  Google Scholar 

  70. Paez X, Hernandez L. Plasma serotonin monitoring by blood microdialysis coupled to high-performance liquid chromatography with electrochemical detection in humans.J Chromatogr B Biomed Sci Appl. 1998;720:33–38.

    Article  PubMed  CAS  Google Scholar 

  71. Garvin S, Dabrosin C. Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo.Cancer Res. 2003;63:8742–8748.

    PubMed  CAS  Google Scholar 

  72. Dabrosin C. Variability of vascular endothelial growth factor in normal human breast tissue in vivo during the menstrual cycle.J Clin Endocrinol Metab. 2003;88:2695–2698.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Gallo.

Additional information

Published: October 24, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Gallo, J.M. In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J 7, 66 (2005). https://doi.org/10.1208/aapsj070366

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070366

Keywords

Navigation