Skip to main content

Advertisement

Log in

Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Decidual stromal cells differentiate from endometrial stromal fibroblasts (ESFs) under the influence of progesterone and cyclic adenosine monophosphate (cAMP) and are essential for implantation and the maintenance of pregnancy. They evolved in the stem lineage of placental (eutherian) mammals coincidental with the evolution of implantation. Here we use the well-established in vitro decidualization protocol to compare early (3 days) and late (8 days) gene transcription patterns in immortalized human ESF. We document extensive, dynamic changes in the early and late decidual cell transcriptomes. The data suggest the existence of an early signal transducer and activator of transcription (STAT) pathway dominated state and a later nuclear factor κB (NFKB) pathway regulated state. Transcription factor expression in both phases is characterized by putative or known progesterone receptor (PGR) target genes, suggesting that both phases are under progesterone control. Decidualization leads to proliferative quiescence, which is reversible by progesterone withdrawal after 3 days but to a lesser extent after 8 days of decidualization. In contrast, progesterone withdrawal induces cell death at comparable levels after short or long exposure to progestins and cAMP. We conclude that decidualization is characterized by a biphasic gene expression dynamic that likely corresponds to different phases in the establishment of the fetal—maternal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014; er20141045. doi:https://doi.org/10.1210/er.2014-1045

  2. Evans J, Salamonsen LA, Winship A, et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12(11):654–667. doi:https://doi.org/10.1038/nrendo.2016.116

    CAS  PubMed  Google Scholar 

  3. Pavličev M, Wagner GP, Chavan AR, et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal—fetal interface. Genome Res. 2017;27(3):349–361. doi:https://doi.org/10.1101/gr.207597.116

    PubMed  PubMed Central  Google Scholar 

  4. Wu S-P, Li R, DeMayo FJ. Progesterone receptor regulation of uterine adaptation for pregnancy. Trends Endocrinol Metab. 2018; doi:https://doi.org/10.1016/j.tem.2018.04.001

  5. Vinketova K, Mourdjeva M, Oreshkova T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J Pregnancy. 2016;2016. doi:https://doi.org/10.1155/2016/8689436

  6. Popovici RM, Kao LC, Giudice LC. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology. 2000;141(9):3510–3513. doi:https://doi.org/10.1210/endo.141.9.7789

    CAS  PubMed  Google Scholar 

  7. Tierney EP, Tulac S, Huang S-TJ, Giudice LC. Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics. 2003;16(1):47–66. doi:https://doi.org/10.1152/physiolgenomics.00066.2003

    CAS  PubMed  Google Scholar 

  8. Takano M, Lu Z, Goto T, et al. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol. 2007;21(10):2334–2349. doi:https://doi.org/10.1210/me.2007-0058

    CAS  PubMed  Google Scholar 

  9. Mazur EC, Vasquez YM, Li X, et al. Progesterone receptor transcriptome and cistrome in decidualized human endometrial stromal cells. Endocrinology. 2015;156(6):2239–2253. doi:https://doi.org/10.1210/en.2014-1566

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salker MS, Nautiyal J, Steel JH, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. Fritz JH, ed. PLoS One. 2012;7(12):e52252. doi:https://doi.org/10.1371/journal.pone.0052252

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Peter Durairaj RR, Aberkane A, Polanski L, et al. Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure. MHR Basic Sci Reprod Med. 2017;23(7):478–487. doi:https://doi.org/10.1093/molehr/gax023

    Google Scholar 

  12. Godbole G, Suman P, Malik A, et al. Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology. 2017 May 17;158(8):2618–2633. doi:https://doi.org/10.1210/en.2017-00032

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu J, Berga SL, Johnston-MacAnanny EB, et al. Endometrial stromal decidualization responds reversibly to hormone stimulation and withdrawal. Endocrinology. 2016;157(6):2432–2446. doi:https://doi.org/10.1210/en.2015-1942

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq. Bioinformatics. 2009;25(9):1105–1111. doi:https://doi.org/10.1093/bioinformatics/btp120

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders S, Pyl PT, Huber W. HTSeq — a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. doi:https://doi.org/10.1093/bioinformatics/btu638

    CAS  PubMed  Google Scholar 

  16. Wagner GP, Kin K, Lynch VJ. A model based criterion for gene expression calls using RNA-seq data. Theory Biosci. 2013;132(3):159–164. doi:https://doi.org/10.1007/s12064-013-0178-3

    CAS  PubMed  Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi:https://doi.org/10.1093/bioinformatics/btp616

    CAS  PubMed  Google Scholar 

  18. Vasquez YM, Mazur EC, Li X, et al. FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol Endocrinol. 2015;29(3):421–433. doi:https://doi.org/10.1210/me.2014-1292

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Erkenbrack EM, Maziarz JD, Griffith OW, et al. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol. 2018;16(8):e2005594. doi:https://doi.org/10.1371/journal.pbio.2005594

    PubMed  PubMed Central  Google Scholar 

  20. Xu B, Geerts D, Qian K, Zhang H, Zhu G. Myeloid ecotropic viral integration site 1 (MEIS) 1 involvement in embryonic implantation. Hum Reprod. 2008;23(6):1394–1406. doi:https://doi.org/10.1093/humrep/den082

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kommagani R, Szwarc MM, Vasquez YM, et al. The promyelocytic leukemia zinc finger transcription factor is critical for human endometrial stromal cell decidualization. In Spencer TE, ed. PLoS Genet. 2016;12(4):e1005937. doi:https://doi.org/10.1371/journal.pgen.1005937

    PubMed  PubMed Central  Google Scholar 

  22. Li Q, Kannan A, DeMayo FJ, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by hand2. Science (80-). 2011;331(6019):912–916. doi:https://doi.org/10.1126/science.1197454

    CAS  Google Scholar 

  23. Ray S, Pollard JW. KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci U S A. 2012;109(21):E1334–E1343. doi:https://doi.org/10.1073/pnas.1118515109

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pabona JMP, Simmen FA, Nikiforov MA, et al. Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012;97(3):E376–E392. doi:https://doi.org/10.1210/jc.2011-2562

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu F, Guo J, Tian T, et al. Placental trophoblasts shifted Th1/Th2 balance toward Th2 and inhibited Th17 immunity at fetomaternal interface. APMIS. 2011;119(9):597–604. doi:https://doi.org/10.1111/j.1600-0463.2011.02774.x

    CAS  PubMed  Google Scholar 

  26. Nagashima T, Maruyama T, Uchida H, et al. Activation of SRC kinase and phosphorylation of signal transducer and activator of transcription-5 are required for decidual transformation of human endometrial stromal cells. Endocrinology. 2008;149(3):1227–1234. doi:https://doi.org/10.1210/en.2007-1217

    CAS  PubMed  Google Scholar 

  27. Vitorino Carvalho A, Eozenou C, Healey GD, et al. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium. Reprod Fertil Dev. 2016;28(4):459–474. doi:https://doi.org/10.1071/RD14034

    CAS  PubMed  Google Scholar 

  28. Christian M, Marangos P, Mak I, et al. Interferon-gamma modulates prolactin and tissue factor expression in differentiating human endometrial stromal cells. Endocrinology. 2001;142(7):3142–3151. doi:https://doi.org/10.1210/endo.142.7.8231

    CAS  PubMed  Google Scholar 

  29. Ronchetti S, Migliorati G, Riccardi C. GILZ as a mediator of the anti-inflammatory effects of glucocorticoids. Front Endocrinol (Lausanne). 2015;6:170. doi:https://doi.org/10.3389/fendo.2015.00170

    Google Scholar 

  30. Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta. 2013;1829(6–7):666–679. doi:https://doi.org/10.1016/j.bbagrm.2013.02.003

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stumpo DJ, Byrd NA, Phillips RS, et al. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the tristetraprolin family. Mol Cell Biol. 2004;24(14):6445–6455. doi:https://doi.org/10.1128/MCB.24.14.6445-6455.2004

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun S-C. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71–85. doi:https://doi.org/10.1038/cr.2010.177

    CAS  PubMed  Google Scholar 

  33. Ogawa S, Satake M, Ikuta K. Physical and functional interactions between STAT5 and runx transcription factors. J Biochem. 2008;143(5):695–709. doi:https://doi.org/10.1093/jb/mvn022

    CAS  PubMed  Google Scholar 

  34. Ziros PG, Georgakopoulos T, Habeos I, Basdra EK, Papavassiliou AG. Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3beta. J Bone Miner Res. 2004;19(11):1892–1904. doi:https://doi.org/10.1359/JBMR.040701

    CAS  PubMed  Google Scholar 

  35. Collins A, Littman DR, Taniuchi I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol. 2009;9(2):106–115. doi:https://doi.org/10.1038/nri2489

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Voon DC-C, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology. 2015;146(4):523–536. doi:https://doi.org/10.1111/imm.12535

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu BC, Cebrian C, Chi X, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–1302. doi:https://doi.org/10.1038/ng.476

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Herriges JC, Verheyden JM, Zhang Z, et al. FGF-regulated ETV transcription factors control FGF-SHH feedback loop in lung branching. Dev Cell. 2015;35(3):322–332. doi:https://doi.org/10.1016/j.devcel.2015.10.006

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boengler K, Pipp F, Fernandez B, Ziegelhoeffer T, Schaper W, Deindl E. Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (CARP). Cardiovasc Res. 2003;59(3):573–581. http://www.ncbi.nlm.nih.gov/pubmed/14499858. Accessed May 28, 2018

    CAS  PubMed  Google Scholar 

  40. Lee KH, Kim J-R. Hepatocyte growth factor induced up-regulations of VEGF through Egr-1 in hepatocellular carcinoma cells. Clin Exp Metastasis. 2009;26(7):685–692. doi:https://doi.org/10.1007/s10585-009-9266-7

    CAS  PubMed  Google Scholar 

  41. Pillon NJ, Chan KL, Zhang S, et al. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am J Physiol Metab. 2016;311(5):E825–E835. doi:https://doi.org/10.1152/ajpendo.00296.2016

    Google Scholar 

  42. Osuga Y, Hirota Y, Yoshino O, Hirata T, Koga K, Taketani Y. Proteinase-activated receptors in the endometrium and endometriosis. Front Biosci (Schol Ed). 2012;4:1201–1212. http://www.ncbi.nlm.nih.gov/pubmed/22652866. Accessed May 28, 2018

    Google Scholar 

  43. Kunsch C, Lang RK, Rosen CA, Shannon MF. Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol. 1994;153(1):153–164. http://www.ncbi.nlm.nih.gov/pubmed/8207232. Accessed May 28, 2018

    CAS  PubMed  Google Scholar 

  44. Bitko V, Velazquez A, Yang L, Yang YC, Barik S. Transcriptional induction of multiple cytokines by human respiratory syncytial virus requires activation of NF-kappa B and is inhibited by sodium salicylate and aspirin. Virology. 1997;232(2):369–378. doi:https://doi.org/10.1006/viro.1997.8582

    CAS  PubMed  Google Scholar 

  45. Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med. 1998;4(3):303–308. http://www.ncbi.nlm.nih.gov/pubmed/9500603. Accessed May 28, 2018

    CAS  PubMed  Google Scholar 

  46. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–947. doi:https://doi.org/10.1038/nrd4002

    CAS  PubMed  Google Scholar 

  47. Kajihara T, Jones M, Fusi L, et al. Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol. 2006;20(10):2444–2455. doi:https://doi.org/10.1210/me.2006-0118

    CAS  PubMed  Google Scholar 

  48. Kania A, Klein R. Mechanisms of ephrin—Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 2016;17(4):240–256. doi:https://doi.org/10.1038/nrm.2015.16

    CAS  PubMed  Google Scholar 

  49. Fujii H, Fujiwara H, Horie A, Sato Y, Konishi I. Ephrin A1 induces intercellular dissociation in Ishikawa cells: possible implication of the Eph-ephrin A system in human embryo implantation. Hum Reprod. 2011;26(2):299–306. doi:https://doi.org/10.1093/humrep/deq340

    CAS  PubMed  Google Scholar 

  50. Luo Q, Liu X, Zheng Y, Zhao Y, Zhu J, Zou L. Ephrin-B2 mediates trophoblast-dependent maternal spiral artery remodeling in first trimester. Placenta. 2015;36(5):567–574. doi:https://doi.org/10.1016/j.placenta.2015.02.009

    CAS  PubMed  Google Scholar 

  51. Dong H, Yu C, Mu J, Zhang J, Lin W. Role of EFNB2/EPHB4 signaling in spiral artery development during pregnancy: an appraisal. Mol Reprod Dev. 2016;83(1):12–18. doi:https://doi.org/10.1002/mrd.22593

    CAS  PubMed  Google Scholar 

  52. Ruehl M, Somasundaram R, Schoenfelder I, et al. The epithelial mitogen keratinocyte growth factor binds to collagens via the consensus sequence glycine—proline—hydroxyproline. J Biol Chem. 2002;277(30):26872–26878. doi:https://doi.org/10.1074/jbc.M202335200

    CAS  PubMed  Google Scholar 

  53. Kera H, Yuki S, Nogawa H. FGF7 signals are relayed to autocrine EGF family growth factors to induce branching morphogenesis of mouse salivary epithelium. Dev Dyn. 2014;243(4):552–559. doi:https://doi.org/10.1002/dvdy.24097

    CAS  PubMed  Google Scholar 

  54. Zhou W-J, Hou X-X, Wang X-Q, Li D-J. Fibroblast growth factor 7 regulates proliferation and decidualization of human endometrial stromal cells via ERK and JNK pathway in an autocrine manner. Reprod Sci. 2017;24(12):1607–1619. doi:https://doi.org/10.1177/1933719117697122

    CAS  PubMed  Google Scholar 

  55. Holland PM. Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev. 2014;25(2):185–193. doi:https://doi.org/10.1016/j.cytogfr.2013.12.009

    CAS  PubMed  Google Scholar 

  56. Lonergan M, Aponso D, Marvin KW, et al. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), TRAIL receptors, and the soluble receptor osteoprotegerin in human gestational membranes and amniotic fluid during pregnancy and labor at term and preterm. J Clin Endocrinol Metab. 2003;88(8):3835–3844. doi:https://doi.org/10.1210/jc.2002-021905

    CAS  PubMed  Google Scholar 

  57. Blanco O, Leno-Durán E, Morales JC, Olivares EG, Ruiz-Ruiz C. Human decidual stromal cells protect lymphocytes from apoptosis. Placenta. 2009;30(8):677–685. doi:https://doi.org/10.1016/j.placenta.2009.05.011

    CAS  PubMed  Google Scholar 

  58. Siersbæk R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab. 2012;23(2):56–64. doi:https://doi.org/10.1016/j.tem.2011.10.001

    PubMed  Google Scholar 

  59. Tripathi SK, Lahesmaa R. Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol Rev. 2014;261(1):62–83. doi:https://doi.org/10.1111/imr.12204

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Telley L, Govindan S, Prados J, et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science. 2016;351(6280):1443–1446. doi:https://doi.org/10.1126/science.aad8361

    CAS  PubMed  Google Scholar 

  61. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium1. J Clin Endocrinol Metab. 1999;84(3):1129–1135. doi:https://doi.org/10.1210/jcem.84.3.5573

    CAS  PubMed  Google Scholar 

  62. Mak IYH, Brosens JJ, Christian M, et al. Regulated expression of signal transducer and activator of transcription, Stat5, and its enhancement of PRL expression in human endometrial stromal cells in vitro. J Clin Endocrinol Metab. 2002;87(6):2581–2588. doi:https://doi.org/10.1210/jcem.87.6.8576

    CAS  PubMed  Google Scholar 

  63. de Bruijn M, Dzierzak E. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood. 2017;129(15):2061–2069. doi:https://doi.org/10.1182/blood-2016-12-689109

    PubMed  Google Scholar 

  64. Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149(4):313–323. doi:https://doi.org/10.1007/s00418-018-1640-6

    CAS  PubMed  Google Scholar 

  65. Evans J, Salamonsen LA. Decidualized human endometrial stromal cells are sensors of hormone withdrawal in the menstrual inflammatory cascade1. Biol Reprod. 2014;90(1):14. doi:https://doi.org/10.1095/biolreprod.113.108175

    PubMed  Google Scholar 

  66. King AE, Critchley HO, Kelly RW. The NF-kappaB pathway in human endometrium and first trimester decidua. Mol Hum Reprod. 2001;7(2):175–183. http://www.ncbi.nlm.nih.gov/pubmed/11160844. Accessed May 28, 2018

    CAS  PubMed  Google Scholar 

  67. Kalkhoven E, Wissink S, van der Saag PT, van der Burg B. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem. 1996;271(11):6217–6224. http://www.ncbi.nlm.nih.gov/pubmed/8626413. Accessed May 28, 2018

    CAS  PubMed  Google Scholar 

  68. Zhang G, Cui L-J, Li A-Y, et al. Endometrial breakdown with sustained progesterone release involves NF-κB-mediated functional progesterone withdrawal in a mouse implant model. Mol Reprod Dev. 2016;83(9):780–791. doi:https://doi.org/10.1002/mrd.22686

    CAS  PubMed  Google Scholar 

  69. Godbole G, Modi D. Regulation of decidualization, interleukin-11, and interleukin-15 by homeobox A 10 in endometrial stromal cells. J Reprod Immuno 2010;85(2):130–139. doi:https://doi.org/10.1016//j.jri.2010.03.003

    CAS  Google Scholar 

  70. Brighton PJ, Maruyama Y, Fishwick K, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017;6:pii:e31274. doi:https://doi.org/10.7554/eLife.31274

    Google Scholar 

  71. Labied S, Kajihara T, Madureira PA, et al. Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol. 2006;20(1):35–44. doi:https://doi.org/10.1210/me.2005-0275

    CAS  PubMed  Google Scholar 

  72. Klotz L-O, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72. doi:https://doi.org/10.1016/j.redox.2015.06.019

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter P. Wagner PhD.

Additional information

Authors’ Note

Data described in this manuscript were acquired at Yale University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rytkönen, K.T., Erkenbrack, E.M., Poutanen, M. et al. Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs. Reprod. Sci. 26, 323–336 (2019). https://doi.org/10.1177/1933719118802056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118802056

Keywords

Navigation