Skip to main content

Advertisement

Log in

The Effect of Copper on Endometrial Receptivity and Induction of Apoptosis on Decidualized Human Endometrial Stromal Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Intrauterine devices (IUDs) have been widely used to prevent pregnancies with great efficacy during decades. It has been demonstrated that IUD alters the endometrial gene expression, but there is no scientific data about how copper, a metal commonly used in these devices, by itself, is able to influence the processes of endometrial receptivity and apoptosis in decidualized human endometrial stromal cells. Five endometrial samples were obtained from fertile women and processed by a standard protocol to obtain human endometrial stromal cells for in vitro studies. Stromal cells were cultured in vitro and decidualized for 8 days. At day 6, copper was added to the treatment group or camptothecin as positive control for apoptosis until day 8. Five endometrial samples were used in each group. The aim of this study was to analyze the effect of copper in apoptosis and necrosis by flow cytometry, to visualize the apoptotic microtubule network during apoptosis by immunofluorescence, and finally to determine the gene expression profile of a panel of 192 genes related to endometrial receptivity and immune system by quantitative reverse transcription PCR (RT-qPCR). Copper, compared to the decidualized group, induced changes in the gene expression by an order of magnitude in 49 genes (42 upand 9 downregulated). This alteration in the decidualization gene signature by copper includes 19 genes involved in the endometriosis pathology and others related to other gynecological disorders such as preeclampsia and infertility. Our results indicate that copper does not increase the apoptosis level induced by the decidualization treatment. However, copper alters the gene expression of some biomarkers of endometrial receptivity and immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Arcangues C. Worldwide use of intrauterine devices for contraception. Contraception. 2007;75(suppl 6):S2–S7.

    PubMed  Google Scholar 

  2. UNDP/UNFPA/WHO/World Bank Special Programme of Development and Research Training in Human Reproduction. Long term safety and effectiveness of copper-releasing intrauterine devices: a case study. Retrieved from http://whqlibdoc.who.int/ hq/2008/WHO_RHR_HRP_08.08_eng.pdf. (accessed May 10, 2017).

    Google Scholar 

  3. Hatcher RA, Trussell J, Nelson AL, Cates W, Stewart FH. Contraceptive Technology. 19th ed. New York, NY: Ardent Media; 2007.

    Google Scholar 

  4. Brahmi D, Steenland MW, Renner RM, Gaffield ME, Curtis KM. Pregnancy outcomes with an IUD in situ: a systematic review. Contraception. 2012;85(2):131–139.

    PubMed  Google Scholar 

  5. Ortiz ME, Croxatto HB. Copper-T intrauterine device and levonorgestrel intrauterine system: biological bases of their mechanism of action. Contraception. 2007;75(suppl 6):S16–S30.

    CAS  PubMed  Google Scholar 

  6. World Health Organization Scientific Group. Mechanism of Action, Safety and Efficacy of Intrauterine Devices. Geneva, Switzerland: World Health Organization; 1987. Technical report series No: 753.

    Google Scholar 

  7. Speroff L, Darney PD. A Clinical Guide for Contraception. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  8. Hatcher RA, Robert A. Contraceptive Technology. 20th ed. New York, NY: Ardent Media; 2011.

    Google Scholar 

  9. Gemzell-Danielsson K, Lalitkumar PG, Berger C. Emergency contraception—mechanisms of action. Contraception. 2013; 88(4):581–582.

    PubMed  Google Scholar 

  10. Stanford JB, Mikolajczyk RT. Mechanisms of action of intrauterine devices: update and estimation of postfertilization effects. Am J Obstet Gynecol. 2002;187(6):1699–1708.

    PubMed  Google Scholar 

  11. Horcajadas JA, Sharkey AM, Catalano RD, et al. Effect of an intrauterine device on the gene expression profile of the endometrium. J Clin Endocrinol Metab. 2006;91(8):3199–3207.

    CAS  PubMed  Google Scholar 

  12. Tetrault AM, Richman SM, Fei X, Taylor HS. Decreased endometrial HOXA10 expression associated with use of the copper intrauterine device. Fertil Steril. 2009;92(6):1820–1824.

    CAS  PubMed  Google Scholar 

  13. Du H, Taylor HS. Molecular regulation of mullerian development by Hox genes. Ann N Y Acad Sci. 2004;1034:152–165.

    CAS  PubMed  Google Scholar 

  14. Filomeni G, Piccirillo S, Graziani I, et al. The isatin-Schiff base copper(II) complex Cu(isaepy)2 acts as delocalized lipophilic cation, yields widespread mitochondrial oxidative damage and induces AMP-activated protein kinase-dependent apoptosis. Carcinogenesis. 2009;30(7):1115–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reinprayoon D. Intrauterine contraception. Curr Opin Obstet Gynecol. 1992;4(4):527–530.

    CAS  PubMed  Google Scholar 

  16. Ylikorkala O. Prostaglandin synthesis inhibitors in menorrhagia, intrauterine contraceptive device-induced side effects and endometriosis. Pharmacol Toxicol. 1994;75(2):86–88.

    PubMed  Google Scholar 

  17. Oruc S, Vatansever HS, Karaer O, Eskicioglu F, Narlikuyu B. Changes in distribution patterns of integrins in endometrium in copper T380 intrauterine device users. Acta Histochem. 2005; 107(2):95–103.

    CAS  PubMed  Google Scholar 

  18. Grillo CA, Reigosa MA, de Mele MA. Does over-exposure to copper ions released from metallic copper induce cytotoxic and genotoxic effects on mammalian cells? Contraception. 2010; 81(4):343–349.

    CAS  PubMed  Google Scholar 

  19. Sanchez-Alcazar JA, Rodriguez-Hernandez A, Cordero MD, et al. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis. 2007;12(7):1195–1208.

    PubMed  Google Scholar 

  20. Simón C, Mercader A, Garcia-Velasco J, et al. Coculture of human embryos with autologous human endometrial epithelial cells in patients with implantation failure. J Clin Endocrinol Metab. 1999;84(8):2638–2646.

    PubMed  Google Scholar 

  21. Kasahara K, Takakura K, Takebayashi K, Kimura F, Nakanishi K, Noda Y. The role of human chorionic gonadotropin on decidualization of endometrial stromal cells in vitro. J Clin Endocrinol Metab. 2001;86(3):1281–1286.

    CAS  PubMed  Google Scholar 

  22. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    PubMed  Google Scholar 

  23. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue): D447–D452.

    CAS  PubMed  Google Scholar 

  24. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.

    CAS  PubMed  Google Scholar 

  25. Arancibia V, Peña C, Allen HE, Lagos G. Characterization of copper in uterine fluids of patients who use copper T-380-A intrauterine device. Clin Chim Acta. 2003;332(1-2):69–78.

    CAS  PubMed  Google Scholar 

  26. Boeddeker SJ, Baston-Buest DM, Fehm T, Kruessel J, Hess A. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli. PLoS One. 2015;10(4):e0121103.

    Google Scholar 

  27. Moulton BC. Transforming growth factor-beta stimulates endometrial stromal apoptosis in vitro. Endocrinol. 1994;134(3): 1055–1060.

    CAS  Google Scholar 

  28. Shikone T, Kokawa K, Yamoto M, Nakano R. Apoptosis of human ovary and uterine endometrium during the menstrual cycle. Horm Res. 1997;48(3):27–34.

    CAS  PubMed  Google Scholar 

  29. Dowd DR, Miesfeld RL. Evidence that glucocorticoid- and cyclic AMP-induced apoptotic pathways in lymphocytes share distal events. Mol Cell Biol. 1992;12(8):3600–3608.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bøe R, Gjertsen BT, Døskeland SO, Vintermyr OK. 8-ChlorocAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line. Br J Cancer. 1995;72(5):1151–1159.

    PubMed  PubMed Central  Google Scholar 

  31. Leno-Duran E, Ruiz-Magana MJ, Munoz-Fernandez R, Requena F, Olivares EG, Ruiz-Ruiz C. Human decidual stromal cells secrete soluble pro-apoptotic factors during decidualization in a cAMP-dependent manner. Hum Reprod. 2014;29(10):2269–2277.

    CAS  PubMed  Google Scholar 

  32. Jasinska A, Strakova Z, Szmidt M, Fazleabas AT. Human chorionic gonadotropin and decidualization in vitro inhibits cytochalasin-D-induced apoptosis in cultured endometrial stromal fibroblasts. Endocrinol. 2006;147(9):4112–4121.

    CAS  Google Scholar 

  33. Kayisli UA, Selam B, Guzeloglu-Kayisli O, Demir R, Arici A. Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system. J Immunol. 2003;171(5):2305–2313.

    CAS  PubMed  Google Scholar 

  34. Li HY, Chang SP, Yuan CC, Chao HT, Ng HT, Sung YJ. Induction of p38 mitogen-activated protein kinase-mediated apoptosis is involved in outgrowth of trophoblast cells on endometrial epithelial cells in a model of human trophoblast-endometrial interactions. Biol Reprod. 2003;69(5):1515–1524.

    CAS  PubMed  Google Scholar 

  35. Carson DD, Lagow E, Thathiah A, et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8(9):871–879.

    CAS  PubMed  Google Scholar 

  36. Kao LC, Tulac S, Lobo S, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinol. 2002;143(6):2119–2138.

    CAS  Google Scholar 

  37. Borthwick JM, Charnock-Jones DS, Tom BD, et al. Determination of the transcript profile of human endometrium. Mol Hum Reprod. 2003;9(1):19–33.

    CAS  PubMed  Google Scholar 

  38. Riesewijk A, Martin J, van Os R, et al. Gene expression profiling of human endometrial receptivity on days LHþ2 versus LHþ7 by microarray technology. Mol Hum Reprod. 2003;9(5):253–264.

    CAS  PubMed  Google Scholar 

  39. Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropinstimulated cycles. J Clin Endocrinol Metab. 2004;89(11): 5742–5752.

    CAS  PubMed  Google Scholar 

  40. Horcajadas JA, Riesewijk A, Domínguez F, Cervero A, Pellicer A, Simón C. Determinants of endometrial receptivity. Ann N Y Acad Sci. 2004;1034:166–175.

    CAS  PubMed  Google Scholar 

  41. Horcajadas JA, Pellicer A, Simón C. Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum Reprod Update. 2007;13(1):77–86.

    CAS  PubMed  Google Scholar 

  42. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 2011;95(1):50–60.

    CAS  PubMed  Google Scholar 

  43. Hu S, Yao G, Wang Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12): 2744–2753.

    Google Scholar 

  44. Brar AK, Handwerger S, Kessler CA, Aronow BJ. Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Phisiol Genomics. 2001;7(2): 135–148.

    CAS  Google Scholar 

  45. Germeyer A, Sharkey AM, Prasadajudio M, et al. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts. Mol Hum Reprod. 2009;15(1):39–48.

    CAS  PubMed  Google Scholar 

  46. Cloke B, Huhtinen K, Fusi L, et al. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinol. 2008;149(9): 4462-4474

    Google Scholar 

  47. Dimitriadis E, Robb L, Salamonsen LA. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod. 2002;8(7):636–643.

    CAS  PubMed  Google Scholar 

  48. Takano M, Lu Z, Goto T, et al. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol. 2007; 21(10):2334–2349.

    CAS  PubMed  Google Scholar 

  49. Kajihara T, Tochigi H, Prechapanich J, et al. Androgen signaling in decidualizing human endometrial stromal cells enhances resistance to oxidative stress. Fertil. Steril. 2012;97(1):185–191.

    CAS  PubMed  Google Scholar 

  50. Vasquez YM, Mazur EC, Li X, et al. FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol Endocrinol. 2015;29(3): 421–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hubacher D, Chen PL, Park S. Side effects from the copper IUD: do they decrease over time?. Contraception. 2009;79(5):356–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiménez MF, Passos EP, Fagundes PA, de Freitas FM, Arbo E, Cunha-Filho JS. Effect of the copper-intrauterine device (TCu 380A) on subendometrial vascularization and uterine artery blood flow. Fertil Steril. 2006;86(6):1780–1782.

    PubMed  Google Scholar 

  53. Hubacher D. Copper intrauterine device use by nulliparous women: review of side effects. Contraception. 2007;75(suppl 6):S8–S11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Horcajadas PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrascosa, J.P., Cotán, D., Jurado, I. et al. The Effect of Copper on Endometrial Receptivity and Induction of Apoptosis on Decidualized Human Endometrial Stromal Cells. Reprod. Sci. 25, 985–999 (2018). https://doi.org/10.1177/1933719117732165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117732165

Keywords

Navigation