Skip to main content
Log in

Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepian-drosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekol. 2015;80(4):279–289.

    PubMed  Google Scholar 

  2. Tauchert S, Ludwig AK, Diedrich K, Weiss JM. Treatment strategies in PCOS patients. Reprod Biomed Online. 2005;10(suppl 3):67–74.

    CAS  PubMed  Google Scholar 

  3. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774–800.

    CAS  PubMed  Google Scholar 

  4. DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1991;73(6):1294–1301.

    Article  CAS  PubMed  Google Scholar 

  5. Aghahosseini M, Aleyaseen A, Safdarian L, Moddaress-Hashemi S, Mofid B, Kashani L. Metformin 2,500 mg/day in the treatment of obese women with polycystic ovary syndrome and its effect on weight, hormones, and lipid profile. Arch Gynecol Obstet. 2010;282(6):691–694.

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Sun J, Wang X, Tao X, Wang H, Tan W. Asymptomatic chronic gastritis decreases metformin tolerance in patients with type 2 diabetes. J Clin Pharm Ther. 2015;40(4):461–465.

    Article  CAS  PubMed  Google Scholar 

  7. Legro RS, Castracane VD, Kauffman RP. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Surv. 2004;59(2):141–154.

    Article  PubMed  Google Scholar 

  8. Mu Y, Liu J, Wang B, et al. Interleukin 1 beta (IL-1beta) promoter C [-511] T polymorphism but not C [+3953] T polymorphism is associated with polycystic ovary syndrome. Endocrine. 2010;37(1):71–75.

    Article  CAS  PubMed  Google Scholar 

  9. Wang JY, JF L. The molecular mechanisms of hyperandrogenism induced chronic mild inflammation in polycystic ovary syndrome. Chin J Obstetr Gynecol. 2011;46(8):633–634.

    CAS  Google Scholar 

  10. Li YF, Guo CJ. [Progress in the study of quercetin metabolism]. Sheng Li Ke Xue Jin Zhan. 2002;33(1):53–55.

    PubMed  Google Scholar 

  11. Rani N, Velan LP, Vijaykumar S, Arunachalam A. An insight into the potentially old-wonder molecule-quercetin: the perspectives in foresee [published online September 9, 2015]. Chin J Integr Med.

    Google Scholar 

  12. Cheng Q, Zhang X, Wang O, et al. Anti-diabetic effects of the ethanol extract of a functional formula diet in mice fed with a fructose/fat-rich combination diet. J Sci Food Agric. 2015;95(2):401–408.

    Article  PubMed  Google Scholar 

  13. Fu JH, Zheng YQ, Li P, Li XZ, Shang XH, Liu JX. Hawthorn leaves flavonoids decreases inflammation related to acute myocardial ischemia/reperfusion in anesthetized dogs. Chin J Integr Med. 2013;19(8):582–588.

    Article  CAS  PubMed  Google Scholar 

  14. Dahmer S, Scott E. Health effects of hawthorn. Am Fam Physician. 2010;81(4):465–468.

    PubMed  Google Scholar 

  15. Zhang X, Zhang C, Shen S, et al. Dehydroepiandrosterone induces ovarian and uterine hyperfibrosis in female rats. Hum Reprod. 2013;28(11):3074–3085.

    Article  CAS  PubMed  Google Scholar 

  16. Henmi H, Endo T, Nagasawa K, et al. Lysyl oxidase and MMP-2 expression in dehydroepiandrosterone-induced polycystic ovary in rats. Biol Reprod. 2001;64(1):157–162.

    Article  CAS  PubMed  Google Scholar 

  17. Di Pietro M, Parborell F, Irusta G, et al. Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology. 2015;156(4):1453–1463.

    Article  PubMed  Google Scholar 

  18. Yu J, Zhai D, Hao L, et al. Cryptotanshinone reverses reproductive and metabolic disturbances in PCOS model rats via regulating the expression of CYP17 and AR. Evid Based Complement Alternat Med. 2014;2014:670743.

    PubMed  PubMed Central  Google Scholar 

  19. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115(4):e500–e503.

    Article  PubMed  Google Scholar 

  20. Coniglio RI, Merono T, Montiel H, et al. HOMA-IR and non-HDL-C as predictors of high cholesteryl ester transfer protein activity in patients at risk for type 2 diabetes. Clin Biochem. 2012;45(7-8):566–570.

    Article  CAS  PubMed  Google Scholar 

  21. Peng DQ, Gao Y, Chen Y. The effect of metformin on insulin receptor substrate-1 expression in the target tissues of OLETF rats. Chin J Diabet. 2000;8(8):348–350.

    Google Scholar 

  22. Shi LJ, Zhao XM, HX X. The effect of quercetin on the gene expression of the fibrinolytic system in the brain of diabetic rats with cerebral infarction. Chin J Neuroimmunol Neurol. 2011;18(2):102–104.

    CAS  Google Scholar 

  23. Bahceci M, Tuzcu A, Canoruc N, Tuzun Y, Kidir V, Aslan C. Serum C-reactive protein (CRP) levels and insulin resistance in non-obese women with polycystic ovarian syndrome, and effect of bicalutamide on hirsutism, CRP levels and insulin resistance. Horm Res. 2004;62(6):283–287.

    CAS  PubMed  Google Scholar 

  24. Chen S, Zheng J, Hao Q, et al. p53-insensitive PUMA down-regulation is essential in the early phase of liver regeneration after partial hepatectomy in mice. J Hepatol. 2010;52(6):864–871.

    Article  CAS  PubMed  Google Scholar 

  25. Kaushik P, Kaushik D, Khokra SL. Ethnobotany and phytopharmacology of Pinus roxburghii Sargent: a plant review. J Integr Med. 2013;11(6):371–376.

    Article  PubMed  Google Scholar 

  26. Kumar B, Gupta SK, Nag TC, et al. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res. 2014;125:193–202.

    Article  CAS  PubMed  Google Scholar 

  27. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014;109(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  28. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842(3):446–462.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Xiao XH, Li M, et al. Chromium-containing traditional Chinese medicine, Tianmai Xiaoke Tablet improves blood glucose through activating insulin-signaling pathway and inhibiting PTP1B and PCK2 in diabetic rats. J Integr Med. 2014;12(3):162–170.

    Article  PubMed  Google Scholar 

  30. Chanock SJ, el Benna J, Smith RM, Babior BM. The respiratory burst oxidase. J Biol Chem. 1994;269(40):24519–24522.

    CAS  PubMed  Google Scholar 

  31. Pawlak K, Mysliwiec M, Pawlak D. Oxidized low-density lipoprotein (oxLDL) plasma levels and oxLDL to LDL ratio—are they real oxidative stress markers in dialyzed patients? Life Sci. 2013;92(4-5):253–258.

    Article  CAS  PubMed  Google Scholar 

  32. Chavez-Sanchez L, Garza-Reyes MG, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Blanco-Favela F. The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Hum Immunol. 2014;75(4):322–329.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest. 2001;107(1):13–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-kappaB signaling pathway. Immunobiology. 2011;216(3):367–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Cheng MM or Chaoqin Yu MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhai, D., Zhang, D. et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reprod. Sci. 24, 682–690 (2017). https://doi.org/10.1177/1933719116667218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116667218

Keywords

Navigation