Skip to main content

Advertisement

Log in

Intrauterine Candida albicans Infection Causes Systemic Fetal Candidiasis With Progressive Cardiac Dysfunction in a Sheep Model of Early Pregnancy

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Several recent studies have identified a potential role for intrauterine Candida albicans in adverse pregnancy outcomes, including preterm birth. There is, however, a limited understanding of the impact of intrauterine Candida infection on fetal well-being in early pregnancy. Using a sheep model of early pregnancy, the aims of this study were to determine (I) the ability of experimentally induced intrauterine C albicans to infect the fetus and (2) whether C albicans exposure in early pregnancy is associated with alterations in fetal cardiac function, as measured by spectral tissue Doppler imaging analysis of fetal cardiac function.

Methods

Merino ewes carrying singleton pregnancies at 89 days’ gestation (term is ~ 150 days) received C albicans (n = 8) via ultrasound-guided intra-amniotic injection. Saline-exposed fetuses served as controls (n = 6). Spectral tissue Doppler imaging echocardiography and amniotic fluid collection were performed at baseline and 24 and 72 hours after intrauterine C albicans injection. Fetal tissues were collected at postmortem for analysis of infection and inflammation.

Results

Relative to saline control, intrauterine C albicans infection resulted in pronounced increases in amniotic fluid tumor necrosis factor α (TNF-α; P <.05) and cytokine/chemokine messenger RNA (interleukin [IL] Iβ, IL-6, TNF-α, and monocyte chemoattractant protein I; P <.05) in the fetal myocardium, lung, skin, and liver at 72 and 96 hours postinfection. Spectral tissue Doppler imaging showed diastolic dysfunction at 24 hours and severe biventricular diastolic dysfunction 72 hours postinfection.

Conclusion

Intrauterine C albicans infection in a sheep model of early pregnancy causes systemic fetal candidiasis, which is associated with a robust systemic inflammatory response and progressive cardiac dysfunction detectable by spectral tissue Doppler imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldenberg RL, Culhane JF, lams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606): 75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1): 2–11.

    Article  PubMed  Google Scholar 

  3. Jones HE, Harris KA, Azizia M, et al. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PloS One. 2009;4(12): e8205.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin DK Jr, Stoll BJ, Fanaroff AA, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1): 84–92.

    Article  PubMed  Google Scholar 

  5. Darmstadt GL, Dinulos JG, Miller Z. Congenital cutaneous candidiasis: clinical presentation, pathogenesis, and management guidelines. Pediatrics. 2000;105(2): 438–444.

    Article  CAS  PubMed  Google Scholar 

  6. Payne MS, Kemp MW, Kallapur SG, et al. Intrauterine Candida albicans infection elicits severe inflammation in fetal sheep. Pediatr Res. 2014;75(6): 716–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Snyder CC, Wolfe KB, Gisslen T, et al. Modulation of lipopolysaccharide-induced chorioamnionitis by Ureaplasma parvum in sheep. Am J Obstet Gynecol. 2013;208(5): 399. e391–e399. e398.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Saito M, Jobe A, et al. Intra-amniotic administration of e coli lipopolysaccharides causes sustained inflammation of the fetal skin in sheep. Reprod Sci. 2012;19(11): 1181–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kemp MW, Miura Y, Payne MS, et al. Repeated maternal intramuscular or intraamniotic erythromycin incompletely resolves intrauterine Ureaplasma parvum infection in a sheep model of pregnancy. Am J Obstet Gynecol. 2014;211(2): 134.e131–134. el39.

    Article  PubMed  Google Scholar 

  10. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371 (9608): 261–269.

    Article  PubMed  Google Scholar 

  11. Crump C, Sundquist K, Sundquist J, Winkleby MA. Gestational age at birth and mortality in young adulthood. JAMA. 2011;306(11): 1233–1240.

    Article  CAS  PubMed  Google Scholar 

  12. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2): 226–234.

    Article  PubMed  Google Scholar 

  13. Irving RJ, Belton NR, Elton RA, Walker BR. Adult cardiovascular risk factors in premature babies. Lancet. 2000;355(9221): 2135–2136.

    Article  CAS  PubMed  Google Scholar 

  14. Ueda P, Cnattingius S, Stephansson O, Ingelsson E, Ludvigsson JF, Bonamy AK. Cerebrovascular and ischemic heart disease in young adults born preterm: a population-based Swedish cohort study. Eur J Epidemiol. 2014;29(4): 253–260.

    Article  PubMed  Google Scholar 

  15. Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2): 197–206.

    Article  PubMed  Google Scholar 

  16. Lewandowski AJ, Bradlow WM, Augustine D, et al. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128(7): 713–720.

    Article  PubMed  Google Scholar 

  17. Kozak-Barany A, Jokinen E, Saraste M, Tuominen J, Valimaki I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: a prospective follow-up study. J Pediatr. 2001;139(4): 539–545.

    Article  CAS  PubMed  Google Scholar 

  18. Bensley JG, Stacy VK, De Matteo R, Harding R, Black MJ. Cardiac remodelling as a result of preterm birth: implications for future cardiovascular disease. Eur Heart J. 2010;31(16): 2058–2066.

    Article  CAS  PubMed  Google Scholar 

  19. Tare M, Bensley JG, Moss TJ, et al. Exposure to intrauterine inflammation leads to impaired function and altered structure in the preterm heart of fetal sheep. Clin Sci. 2014;127(9): 559–569.

    Article  CAS  Google Scholar 

  20. Yanowitz TD, Jordan JA, Gilmour CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: asso-ciation with cord blood cytokine concentrations. Pediatr Res. 2002;51(3): 310–316.

    Article  PubMed  Google Scholar 

  21. Rounioja S, Rasanen J, Glumoff V, Ojaniemi M, Makikallio K, Hallman M. Intra-amniotic lipopolysaccharide leads to fetal cardiac dysfunction. A mouse model for fetal inflammatory response. Cardiovasc Res. 2003;60(1): 156–164.

    Article  CAS  PubMed  Google Scholar 

  22. Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol. 2014;5(DEC):574.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kemp MW, Molloy TJ, Usuda H, et al. Outside-in? Acute fetal systemic inflammation in very preterm chronically catheterized sheep fetuses is not driven by cells in the fetal blood. Am J Obstet Gynecol. 2016;214(2): 281.el-281.el0.

    Article  PubMed  Google Scholar 

  24. Cruz-Martinez R, Figueras F, Benavides-Serralde A, Crispi F, Hernandez-Andrade E, Gratacos E. Sequence of changes in myo-cardial performance index in relation to aortic isthmus and ductus venosus Doppler in fetuses with early-onset intrauterine growth restriction. Ultrasound Obstet Gynecol. 2011;38(2): 179–184.

    Article  CAS  PubMed  Google Scholar 

  25. Council NHaMR, ed. Australian Code for the Care and use of Animals for Scientific Purposes. 8th ed. Canberra, Australia: National Health and Medical Research Council; 2013.

    Google Scholar 

  26. Miura Y, Payne MS, Keelan JA, et al. Maternal intravenous treatment with either azithromycin or solithromycin clears Urea-plasma parvum from the amniotic fluid in an ovine model of intrauterine infection. Antimicrob Agents Chemother. 2014;58(9): 5413–5420.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Stock MBChB, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stock, S.J., Patey, O., Thilaganathan, B. et al. Intrauterine Candida albicans Infection Causes Systemic Fetal Candidiasis With Progressive Cardiac Dysfunction in a Sheep Model of Early Pregnancy. Reprod. Sci. 24, 77–84 (2017). https://doi.org/10.1177/1933719116649697

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116649697

Keywords

Navigation