Skip to main content
Log in

The Mitochondrial tRNALeu(UUR) A3302G Mutation may be Associated With Insulin Resistance in Woman With Polycystic Ovary Syndrome

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of mitochondrial DNA (mtDNA) mutations in polycystic ovary syndrome (PCOS) with insulin resistance (IR), and to explore the possible maternally effects on PCOS. We performed clinical, genetic, and molecular characterization of a Han Chinese family with maternally inherited IR, and we further investigated the possible relationship between mitochondrial genetic background, copy number, and IR. Most strikingly, members from the first and second generation of this family exhibited the type 2 diabetes mellitus (T2DM) with IR, while the member in the third generation of this family manifested the PCOS. Sequence analysis of the complete mitochondrial genome showed the presence of a homoplasmic A3302G in the acceptor arm of transfer RNALeu(UUR) (tRNALeu(UUR)) gene. This mutation disrupted the highly conserved base pairing (2T-71A) and resulted a failure in mt-tRNA metabolism. Analysis of the mitochondrial copy number showed that the patients with PCOS and IR had lower copy number than the health controls, suggesting that mitochondrial dysfunction may be involved in the pathogenesis of IR. Taken together, the A3302G mutation was a pathogenic mutation associated with IR in this Chinese family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47.

    Article  Google Scholar 

  2. Azziz R, Woods KS, Reyna R, et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89(6):2745–2749.

    Article  CAS  PubMed  Google Scholar 

  3. Diamanti-Kandarakis E. Insulin resistance in PCOS. Endocrine. 2006;30(1):13–17.

    Article  CAS  PubMed  Google Scholar 

  4. Kelley DE, Goodpaster B, Wing RR, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999;277(6 pt 1):E1130–E1141.

    CAS  PubMed  Google Scholar 

  5. Kim JY, Hickner RC, Cortright RL, et al. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(5):E1039–E1044.

    Article  CAS  PubMed  Google Scholar 

  6. Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skov V, Glintborg D, Knudsen S, et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56(9):2349–2355.

    Article  CAS  PubMed  Google Scholar 

  8. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3):267–273.

    Article  CAS  PubMed  Google Scholar 

  9. Zhuo G, Ding Y, Feng G, et al. Analysis of mitochondrial DNA sequence variants in patients with polycystic ovary syndrome. Arch Gynecol Obstet. 2012;286(3):653–659.

    Article  CAS  PubMed  Google Scholar 

  10. Rieder MJ, Taylor SL, Tobe VO, Nickerson DA. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 1998;26(4):967–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999; 23(2):147.

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz-Pesini E, Wallace DC. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat. 2006;27(11):1072–1081.

    Article  CAS  PubMed  Google Scholar 

  13. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem. 2000;285(2):194–204.

    Article  CAS  PubMed  Google Scholar 

  14. Yarham JW, Al-Dosary M, Blakely EL, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat. 2011:32(11):1319–1325.

    Article  CAS  PubMed  Google Scholar 

  15. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(suppl 1):S62–S69.

    Article  PubMed Central  Google Scholar 

  16. van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30(2):E386–E394.

    Article  PubMed  Google Scholar 

  17. Bibb MJ, Van Etten RA, Wright CT, et al. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981;26(2 pt 2):167–180.

    Article  CAS  PubMed  Google Scholar 

  18. Gadaleta G, Pepe G, De Candia G, et al. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol. 1989;28(6):497–516.

    Article  CAS  PubMed  Google Scholar 

  19. Roe BA, Ma DP, Wilson RK, Wong JF. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985;260:9759–9774.

    CAS  PubMed  Google Scholar 

  20. Kazachkova N, Ramos A, Santos C, Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis. 2013;4(6):337–350.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ritov VB, Menshikova EV, Azuma K, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298:E49–E58.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dedoussis GV, Kaliora AC, Panagiotakos DB. Genes, diet and type 2 diabetes mellitus: a review. Rev Diabet Stud. 2007;4(1):13–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95(5):875–892.

    Article  CAS  PubMed  Google Scholar 

  25. Grodsky GM. The importance of rapid insulin secretion: revisited. Diabetes Technol Ther. 1999;1(3):259–260.

    Article  CAS  PubMed  Google Scholar 

  26. Teng L, Zheng J, Leng J, et al. Clinical and molecular characterization of a Han Chinese family with high penetrance of essential hypertension. Mitochondrial DNA. 2012;23(6):461–465.

    Article  CAS  PubMed  Google Scholar 

  27. Goto M, Komaki H, Saito T, et al. MELAS phenotype associated with m.3302A>G mutation in mitochondrial tRNA(Leu(UUR)) gene. Brain Dev. 2014;36(2):180–182.

    Article  PubMed  Google Scholar 

  28. Hutchison WM, Thyagarajan D, Poulton J, et al. Clinical and molecular features of encephalomyopathy due to the A3302G mutation in the mitochondrial tRNALeu(UUR) gene. Arch Neurol. 2005;62:1920–1923.

    Article  PubMed  Google Scholar 

  29. van den Bosch BJ, de Coo IF, Hendrickx AT, et al. Increased risk for cardiorespiratory failure associated with the A3302G mutation in the mitochondrial DNA encoded tRNALeu(UUR) gene. Neuromuscul Disord. 2004;14(10):683–688.

    Article  PubMed  Google Scholar 

  30. Maniura-Weber K, Helm M, Engemann K, et al. Molecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene. Nucleic Acids Res. 2006;34:6404–6415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bindoff LA, Howell N, Poulton J, et al. Abnormal RNA processing associated with a novel tRNA mutation in mitochondrial DNA: a potential disease mechanism. J Biol Chem. 1993;268(26): 19559–19564.

    CAS  PubMed  Google Scholar 

  32. Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin- resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeng JY, Yeh TS, Lee JW, et al. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem. 2008;103(2):347–357.

    Article  CAS  PubMed  Google Scholar 

  34. Lee SH, Chung DJ, Lee HS, et al. Mitochondrial DNA copy number in peripheral blood in polycystic ovary syndrome. Metabolism. 2011;60(12):1677–1682.

    Article  CAS  PubMed  Google Scholar 

  35. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–450.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ding MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhuo, G. & Zhang, C. The Mitochondrial tRNALeu(UUR) A3302G Mutation may be Associated With Insulin Resistance in Woman With Polycystic Ovary Syndrome. Reprod. Sci. 23, 228–233 (2016). https://doi.org/10.1177/1933719115602777

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115602777

Keywords

Navigation