Skip to main content

Advertisement

Log in

N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study evaluated the potential protective effect of the antioxidants, l-carnitine (LC) and N-acetyl-cysteine (NAC), in preventing meiotic oocyte damage induced by follicular fluid (FF) from infertile women with mild endometriosis (ME). We performed an experimental study. The FF samples were obtained from 22 infertile women undergoing stimulated cycles for intracytoplasmic sperm injection (11 with ME and 11 without endometriosis). Immature bovine oocytes were submitted to in vitro maturation (IVM) divided into 9 groups: no-FF (No-FF); with FF from control (CFF) or ME (EFF) groups; and with LC (C + LC and E + LC), NAC (C + NAC and E + NAC), or both antioxidants (C + 2Ao and E + 2Ao). After IVM, oocytes were immunostained for visualization of microtubules and chromatin by confocal microscopy. The percentage of meiotically normal metaphase II (MII) oocytes was significantly lower in the EFF group (51.35%) compared to No-FF (86.36%) and CFF (83.52%) groups. The E + NAC (62.22%), E + LC (80.61%), and E + 2Ao (61.40%) groups showed higher percentage of normal MII than EFF group. The E + LC group showed higher percentage of normal MII than E + NAC and E + 2Ao groups and a similar percentage to No-FF and CFF groups. Therefore, FF from infertile women with ME causes meiotic abnormalities in bovine oocytes, and, for the first time, we demonstrated that the use of NAC and LC prevents these damages. Our findings elucidate part of the pathogenic mechanisms involved in infertility associated with ME and open perspectives for further studies investigating whether the use of LC could improve the natural fertility and/or the results of in vitro fertilization of women with ME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447): 1789–1799.

    Article  PubMed  Google Scholar 

  2. Augoulea A, Alexandrou A, Creatsa M, Vrachnis N, Lambrinoudaki I. Pathogenesis of endometriosis: the role of genetics, inflammation and oxidative stress. Arch Gynecol Obstet. 2012;286(1): 99–103.

    Article  CAS  PubMed  Google Scholar 

  3. Bulletti C, Coccia ME, Battistoni S, Borini A. Endometriosis and infertility. J Assist Reprod Genet. 2010;27(8):441–447.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67(5): 817–821.

    Article  Google Scholar 

  5. Akande VA, Hunt LP, Cahill DJ, Jenkins JM. Differences in time to natural conception between women with unexplained infertility and infertile women with minor endometriosis. Hum Reprod. 2004;19(1):96–103.

    Article  PubMed  Google Scholar 

  6. D’Hooghe TM, Debrock S, Hill JA, Meuleman C. Endometriosis and subfertility: is the relationship resolved? Semin Reprod Med. 2003;21(2):243–254.

    Article  PubMed  Google Scholar 

  7. Bérubé S, Marcoux S, Langevin M, Maheux R. Fecundity of infertile women with minimal or mild endometriosis and women with unexplained infertility. The Canadian Collaborative Group on Endometriosis. Fertil Steril. 1998;69(6):1034–1041.

    Article  PubMed  Google Scholar 

  8. Pellicer A, Navarro J, Bosch E, et al. Endometrial quality in infertile women with endometriosis. Ann N Y Acad Sci. 2001;943: 122–130.

    Article  CAS  PubMed  Google Scholar 

  9. Mansour G, Sharma RK, Agarwal A, Falcone T. Endometriosisinduced alterations in mouse metaphase II oocyte microtubules and chromosomal alignment: a possible cause of infertility. Fertil Steril. 2010;94(5):1894–1899.

    Article  PubMed  Google Scholar 

  10. Da Broi MG, Malvezzi H, Paz CC, Ferriani RA, Navarro PA. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum Reprod. 2014;29(2):315–323.

    Article  PubMed  Google Scholar 

  11. Barcelos ID, Vieira RC, Ferreira EM, Martins WP, Ferriani RA, Navarro PA. Comparative analysis of the spindle and chromosome configurations of in vitro-matured oocytes from patients with endometriosis and from control subjects: a pilot study. Fertil Steril. 2009;92(5):1749–1752.

    Article  PubMed  Google Scholar 

  12. Simón C, Gutiérrez A, Vidal A, et al. Outcome of patients with endometriosis in assisted reproduction: results from invitro fertilization and oocyte donation. Hum Reprod. 1994; 9(4):725–729.

    Article  PubMed  Google Scholar 

  13. Díaz I, Díaz I, Navarro J, et al. Impact of stage iii–iv endometriosis on recipients of sibling oocytes: matched case-control study. Fertil Steril. 2000;74(1):31–34.

    Article  PubMed  Google Scholar 

  14. Ferreira EM, Vireque AA, Adona PR, Ferriani RA, Navarro PA. Prematuration of bovine oocytes with butyrolactone I reversibly arrests meiosis without increasing meiotic abnormalities after in vitro maturation. Eur J Obstet Gynecol Reprod Biol. 2009; 145(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  15. Mattson BA, Albertini DF. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev. 1990; 25(4):374–383.

    Article  CAS  PubMed  Google Scholar 

  16. Albertini DF. Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat Res. 1992;296(1–2):57–68.

    Article  CAS  PubMed  Google Scholar 

  17. Navarro PA, Liu L, Trimarchi JR, Ferriani RA, Keefe DL. Noninvasive imaging of spindle dynamics during mammalian oocyte activation. Fertil Steril. 2005;83(suppl 1):1197–1205.

    Article  PubMed  Google Scholar 

  18. Wang WH, Keefe DL. Prediction of chromosome misalignment among in vitro matured human oocytes by spindle imaging with the PolScope. Fertil Steril. 2002;78(5):1077–1081.

    Article  PubMed  Google Scholar 

  19. Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18(2):223–225.

    Article  CAS  PubMed  Google Scholar 

  20. Coticchio G, Sciajno R, Hutt K, Bromfield J, Borini A, Albertini DF. Comparative analysis of the metaphase II spindle of human oocytes through polarized light and high-performance confocal microscopy. Fertil Steril. 2010;93(6):2056–2064.

    Article  PubMed  Google Scholar 

  21. Hu Y, Betzendahl I, Cortvrindt R, Smitz J, Eichenlaub-Ritter U. Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture. Hum Reprod. 2001;16(4):737–748.

    Article  CAS  PubMed  Google Scholar 

  22. Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online. 2002;5(2):117–124.

    Article  PubMed  Google Scholar 

  23. Mullen SF, Agca Y, Broermann DC, Jenkins CL, Johnson CA, Critser JK. The effect of osmotic stress on the metaphase II spindle of human oocytes, and the relevance to cryopreservation. Hum Reprod. 2004;19(5):1148–1154.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma RK, Azeem A, Agarwal A. Spindle and chromosomal alterations in metaphase II oocytes. Reprod Sci. 2013;20(11): 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  25. Navarro PA, Liu L, Ferriani RA, Keefe DL. Arsenite induces aberrations in meiosis that can be prevented by coadministration of N-acetylcysteine in mice. Fertil Steril. 2006;85(suppl 1): 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J Biol Chem. 2003;278(34): 31998–32004.

    Article  CAS  PubMed  Google Scholar 

  27. Navarro PA, Liu L, Keefe DL. In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse. Biol Reprod. 2004;70(4):980–985.

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721–724.

    Article  CAS  PubMed  Google Scholar 

  29. Das S, Chattopadhyay R, Ghosh S, Goswami SK, Chakravarty BN, Chaudhury K. Reactive oxygen species level in follicular fluid–embryo quality marker in IVF? Hum Reprod. 2006;21(9): 2403–2407.

    Article  CAS  PubMed  Google Scholar 

  30. Yalçınkaya E, Cakıroğlu Y, Doğer E, Budak O, Cekmen M, Calışkan E. Effect of follicular fluid NO, MDA and GSH levels on in vitro fertilization outcomes. J Turk Ger Gynecol Assoc. 2013;14(3):136–141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil Steril. 2014;102(1):151–159. e155.

    Article  CAS  PubMed  Google Scholar 

  32. Prieto L, Quesada JF, Cambero O, et al. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril. 2012;98(1):126–130.

    Article  CAS  PubMed  Google Scholar 

  33. Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol. 2013; 42:116–124.

    Article  CAS  PubMed  Google Scholar 

  34. Yazaki T, Hiradate Y, Hoshino Y, Tanemura K, Sato E. L-Carnitine improves hydrogen peroxide-induced impairment of nuclear maturation in porcine oocytes. Anim Sci J. 2013; 84(5):395–402.

    Article  CAS  PubMed  Google Scholar 

  35. Bremer J, Woldegiorgis G, Schalinske K, Shrago E. Carnitine palmitoyltransferase. Activation by palmitoyl-CoA and inactivation by malonyl-CoA. Biochim Biophys Acta. 1985;833(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  36. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–4129.

    Article  CAS  PubMed  Google Scholar 

  38. Dekhuijzen PN. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23(4):629–636.

    Article  CAS  PubMed  Google Scholar 

  39. De Flora S, Bennicelli C, Camoirano A, et al. In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis. 1985;6(12):1735–1745.

    Article  PubMed  Google Scholar 

  40. Adona PR, Lima Verde Leal C. Meiotic inhibition with different cyclin-dependent kinase inhibitors in bovine oocytes and its effects on maturation and embryo development. Zygote. 2004; 12(3):197–204.

    Article  CAS  PubMed  Google Scholar 

  41. Hashimoto S, Minami N, Takakura R, Imai H. Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro. Biol Reprod. 2002;66(6):1696–1701.

    Article  CAS  PubMed  Google Scholar 

  42. Whitaker BD, Casey SJ, Taupier R. The effects of N-acetyl-L-cysteine supplementation on in vitro porcine oocyte maturation and subsequent fertilisation and embryonic development. Reprod Fertil Dev. 2012;24(8):1048–1054.

    Article  CAS  PubMed  Google Scholar 

  43. Mansour G, Abdelrazik H, Sharma RK, Radwan E, Falcone T, Agarwal A. L-Carnitine supplementation reduces oocyte cytoskeleton damage and embryo apoptosis induced by incubation in peritoneal fluid from patients with endometriosis. Fertil Steril. 2009;91(suppl 5):2079–2086.

    Article  CAS  PubMed  Google Scholar 

  44. Liu L, Ju JC, Yang X. Differential inactivation of maturationpromoting factor and mitogen-activated protein kinase following parthenogenetic activation of bovine oocytes. Biol Reprod. 1998; 59(3):537–545.

    Article  CAS  PubMed  Google Scholar 

  45. Ju JC, Jiang S, Tseng JK, Parks JE, Yang X. Heat shock reduces developmental competence and alters spindle configuration of bovine oocytes. Theriogenology. 2005;64(8):1677–1689.

    Article  PubMed  Google Scholar 

  46. Liu J, Liu M, Ye X, et al. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012; 27(5):1411–1420.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004; 71(5):1724–1729.

    Article  CAS  PubMed  Google Scholar 

  48. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–843.

    Article  PubMed  Google Scholar 

  49. Szczepańska M, Koźlik J, Skrzypczak J, Mikołajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril. 2003;79(6):1288–1293.

    Article  PubMed  Google Scholar 

  50. Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N, Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 2008;90(2):247–257.

    Article  CAS  PubMed  Google Scholar 

  51. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pandey AN, Tripathi A, Premkumar KV, Shrivastav TG, Chaube SK. Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes. J Cell Biochem. 2010;111(3):521–528.

    Article  CAS  PubMed  Google Scholar 

  53. Whitaker BD, Knight JW. Effects of N-acetyl-cysteine and N-acetyl-cysteine-amide supplementation on in vitro matured porcine oocytes. Reprod Domest Anim. 2010;45(5):755–759.

    CAS  PubMed  Google Scholar 

  54. Somfai T, Kaneda M, Akagi S, et al. Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod Fertil Dev. 2011;23(7):912–920.

    Article  CAS  PubMed  Google Scholar 

  55. Phongnimitr T, Liang Y, Srirattana K, et al. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim Sci J. 2013;84(11):719–725.

    Article  CAS  PubMed  Google Scholar 

  56. Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–1147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Stadtman ER. Protein oxidation and aging. Science. 1992; 257(5074):1220–1224.

    Article  CAS  PubMed  Google Scholar 

  58. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–20316.

    Article  CAS  PubMed  Google Scholar 

  59. Limoli CL, Hartmann A, Shephard L, et al. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res. 1998;58(16): 3712–3718.

    CAS  PubMed  Google Scholar 

  60. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–581.

    Article  CAS  PubMed  Google Scholar 

  61. Liu F, He L, Liu Y, Shi Y, Du H. The expression and role of oxidative stress markers in the serum and follicular fluid of patients with endometriosis. Clin Exp Obstet Gynecol. 2013;40(3): 372–376.

    CAS  PubMed  Google Scholar 

  62. Jungheim ES, Macones GA, Odem RR, et al. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95(6):1970–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Gorman A, Wallace M, Cottell E, et al. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction. 2013; 146(4):389–395.

    Article  PubMed  CAS  Google Scholar 

  64. Yang X, Wu LL, Chura LR, et al. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril. 2012;97(6):1438–1443.

    Article  CAS  PubMed  Google Scholar 

  65. Várnagy A, Bene J, Sulyok E, Kovács GL, Bódis J, Melegh B. Acylcarnitine esters profiling of serum and follicular fluid in patients undergoing in vitro fertilization. Reprod Biol Endocrinol. 2013;11:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa S. I. Giorgi MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, V.S.I., Da Broi, M.G., Paz, C.C.P. et al. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis. Reprod. Sci. 23, 342–351 (2016). https://doi.org/10.1177/1933719115602772

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115602772

Keywords

Navigation