Skip to main content
Log in

Androgen Receptor Coregulator CTBP1-AS Is Associated With Polycystic Ovary Syndrome in Chinese Women: A Preliminary Study

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is currently considered a predominantly hyperandrogenic syndrome. In theory, hyperandrogenism can be caused by high level of testosterone (T) as well as by enhanced androgen receptor (AR) activity. C-Terminal binding protein 1 antisense (CTBP1-AS) was a novel long noncoding RNA (lncRNA) to regulate AR activity. In this study, we found that expression level of CTBP1-AS in peripheral blood leukocytes was significantly higher in women with PCOS than that in controls after adjustment for age and body mass index (BMI). Individuals having higher expression of CTBP1-AS had significantly greater disease risk than those having lower expression. We also identified expression of CTBP1-AS as an independent risk factor for PCOS. A positive correlation was observed between the CTBP1-AS expression and the total T (TT) concentration either unadjusted or after adjusting for age, BMI, and homeostatic model assessment insulin resistance. Taken together, our current study presented the first evidence that the lncRNA CTBP1-AS, a novel AR modulator, is associated with PCOS in Chinese population and established the possibility that abnormal CTBP1-AS expression is a risk factor for PCOS and it is a predictor of variability in serum TT level in Chinese women with PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7(4):219–231.

    CAS  PubMed  Google Scholar 

  2. Sung YA, Oh JY, Chung H, Lee H. Hyperandrogenemia is implicated in both the metabolic and reproductive morbidities of polycystic ovary syndrome. Fertil Steril. 2014;101(3):840–845.

    CAS  PubMed  Google Scholar 

  3. Azziz R, Carmina E, Dewailly D, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–4245.

    CAS  PubMed  Google Scholar 

  4. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–3015.

    CAS  PubMed  Google Scholar 

  5. Blank SK, McCartney CR, Helm KD, Marshall JC. Neuroendocrine effects of androgens in adult polycystic ovary syndrome and female puberty. Semin Reprod Med. 2007;25(5):352–359.

    CAS  PubMed  Google Scholar 

  6. Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol. 2010;24(7):1393–1403.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Walters KA, Middleton LJ, Joseph SR, et al. Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biol Reprod. 2012; 87(6):151.

    PubMed  Google Scholar 

  8. Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J Endocrinol. 2007;192(3):585–594.

    CAS  PubMed  Google Scholar 

  9. Allemand MC, Irving BA, Asmann YW, et al. Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes-a potential model for PCOS-related insulin resistance. PLoS One. 2009; 4(1): e4274.

    PubMed  PubMed Central  Google Scholar 

  10. Schuring AN, Welp A, Gromoll J, et al. Role of the CAG repeat polymorphism of the androgen receptor gene in polycystic ovary syndrome (PCOS). Exp Clin Endocrinol Diabetes. 2012;120(2): 73–79.

    CAS  PubMed  Google Scholar 

  11. Shah NA, Antoine HJ, Pall M, Taylor KD, Azziz R, Goodarzi MO. Association of androgen receptor CAG repeat polymorphism and polycystic ovary syndrome. J Clin Endocrinol Metab. 2008; 93(5): 1939–1945.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vottero A, Stratakis CA, Ghizzoni L, Longui CA, Karl M, Chrousos GP. Androgen receptor-mediated hypersensitivity to androgens in women with nonhyperandrogenic hirsutism: skewing of X-chromosome inactivation. J Clin Endocrinol Metab. 1999;84(3):1091–1095.

    CAS  PubMed  Google Scholar 

  13. Mifsud A, Ramirez S, Yong EL. Androgen receptor gene CAG trinucleotide repeats in anovulatory infertility and polycystic ovaries. J Clin Endocrinol Metab. 2000;85(9):3484–3488.

    CAS  PubMed  Google Scholar 

  14. Peng CY, Xie HJ, Guo ZF, et al. The association between androgen receptor gene CAG polymorphism and polycystic ovary syndrome: a case-control study and meta-analysis. J Assist Reprod Genet. 2014;31(9):1211–1219.

    PubMed  PubMed Central  Google Scholar 

  15. Dasgupta S, Sirisha PV, Neelaveni K, et al. Androgen receptor CAG repeat polymorphism and epigenetic influence among the south Indian women with Polycystic Ovary Syndrome. PLoS One. 2010; 5(8):e12401.

    PubMed  PubMed Central  Google Scholar 

  16. Ferk P, Perme MP, Teran N, Gersak K. Androgen receptor gene (CAG)n polymorphism in patients with polycystic ovary syndrome. Fertil Steril. 2008;90(3):860–863.

    CAS  PubMed  Google Scholar 

  17. Jaaskelainen J, Korhonen S, Voutilainen R, Hippelainen M, Heinonen S. Androgen receptor gene CAG length polymorphism in women with polycystic ovary syndrome. Fertil Steril. 2005; 83(6):1724–1728.

    CAS  PubMed  Google Scholar 

  18. Liu Q, Hong J, Cui B, et al. Androgen receptor gene CAG(n) trinucleotide repeats polymorphism in Chinese women with polycystic ovary syndrome. Endocrine. 2008;33(2):165–170.

    CAS  PubMed  Google Scholar 

  19. Skrgatic L, Baldani DP, Cerne JZ, Ferk P, Gersak K. CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influences serum testosterone levels. J Steroid Biochem Mol Biol. 2012;128(3–5): 107–112.

    CAS  PubMed  Google Scholar 

  20. Rajender S, Carlus SJ, Bansal SK, et al. Androgen receptor CAG repeats length polymorphism and the risk of polycystic ovarian syndrome (PCOS). PLoS One. 2013; 8(10):e75709.

    PubMed  PubMed Central  Google Scholar 

  21. Kim JJ, Choung SH, Choi YM, Yoon SH, Kim SH, Moon SY. Androgen receptor gene CAG repeat polymorphism in women with polycystic ovary syndrome. Fertil Steril. 2008;90(6): 2318–2323.

    CAS  PubMed  Google Scholar 

  22. Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(1): 161–165.

    CAS  PubMed  Google Scholar 

  23. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28(7): 778–808.

    CAS  PubMed  Google Scholar 

  24. Ravindranathan P, Lee TK, Yang L, et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun. 2013;4:1923.

    PubMed  Google Scholar 

  25. Urbanucci A, Waltering KK, Suikki HE, Helenius MA, Visakorpi T. Androgen regulation of the androgen receptor coregulators. BMC Cancer. 2008;8:219.

    PubMed  PubMed Central  Google Scholar 

  26. Vija L, Meduri G, Comperat E, et al. Expression and characterization of androgen receptor coregulators, SRC-2 and HBO1, during human testis ontogenesis and in androgen signaling deficient patients. Mol Cell Endocrinol. 2013;375(1–2): 140–148.

    CAS  PubMed  Google Scholar 

  27. Takayama K, Horie-Inoue K, Katayama S, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBOJ. 2013;32(12):1665–1680.

    CAS  Google Scholar 

  28. Takayama K, Tsutsumi S, Katayama S, et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene. 2011;30(5): 619–630.

    CAS  PubMed  Google Scholar 

  29. Sung YY, Cheung E. Antisense now makes sense: dual modulation of androgen-dependent transcription by CTBP1-AS. EMBO J. 2013;32(12):1653–1654.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47.

  31. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9):e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.

    CAS  PubMed  Google Scholar 

  33. Dewailly D, Catteau-Jonard S, Reyss AC, Leroy M, Pigny P. Oligoanovulation with polycystic ovaries but not overt hyperandrogenism. J Clin Endocrinol Metab. 2006;91(10): 3922–3927.

    CAS  PubMed  Google Scholar 

  34. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89(6):2745–2749.

    CAS  PubMed  Google Scholar 

  35. McEwan IJ, McGuinness D, Hay CW, Millar RP, Saunders PT, Fraser HM. Identification of androgen receptor phosphorylation in the primate ovary in vivo. Reproduction. 2010;140(1):93–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia Y, Che Y, Zhang X, et al. Polymorphic CAG repeat in the androgen receptor gene in polycystic ovary syndrome patients. Mol Med Rep. 2012;5(5): 1330–1334.

    CAS  PubMed  Google Scholar 

  37. Wang R, Goodarzi MO, Xiong T, Wang D, Azziz R, Zhang H. Negative association between androgen receptor gene CAG repeat polymorphism and polycystic ovary syndrome? A systematic review and meta-analysis. Mol Hum Reprod. 2012;18(10): 498–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee HJ, Chang C. Recent advances in androgen receptor action. Cell Mol Life Sci. 2003;60(8): 1613–1622.

    CAS  PubMed  Google Scholar 

  39. Weichenhan D, Plass C. The evolving epigenome. Hum Mol Genet. 2013;22(R1):R1–R6.

    CAS  PubMed  Google Scholar 

  40. Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA. 1996;93(11):5517–5521.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ibanez L, Ong KK, Mongan N, et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab. 2003;88(7):3333–3338.

    CAS  PubMed  Google Scholar 

  42. Hsiao PW, Lin DL, Nakao R, Chang C. The linkage of Kennedy’s neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem. 1999;274(29):20229–20234.

    CAS  PubMed  Google Scholar 

  43. Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab. 1997;82(11): 3777–3782.

    CAS  PubMed  Google Scholar 

  44. McAbee MD, Doncarlos LL. Estrogen, but not androgens, regulates androgen receptor messenger ribonucleic acid expression in the developing male rat forebrain. Endocrinology. 1999; 140(8):3674–3681.

    CAS  PubMed  Google Scholar 

  45. Gupta C. Modulation of androgen receptor (AR)-mediated transcriptional activity by EGF in the developing mouse reproductive tract primary cells. Mol Cell Endocrinol. 1999;152(1–2):169–178.

    CAS  PubMed  Google Scholar 

  46. Van Nieuwerburgh F, Stoop D, Cabri P, Dhont M, Deforce D, De Sutter P. Shorter CAG repeats in the androgen receptor gene may enhance hyperandrogenicity in polycystic ovary syndrome. Gynecol Endocrinol. 2008;24(12):669–673.

    PubMed  Google Scholar 

  47. Yang L, Lin C, Jin C, et al. IncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500(7464):598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moran C, Arriaga M, Rodriguez G, Moran S. Obesity differentially affects phenotypes of polycystic ovary syndrome. Int J Endocrinol. 2012;2012:317241.

    PubMed  PubMed Central  Google Scholar 

  49. Spencer JB, Klein M, Kumar A, Azziz R. The age-associated decline of androgens in reproductive age and menopausal Black and White women. J Clin Endocrinol Metab. 2007;92(12):4730–4733.

    CAS  PubMed  Google Scholar 

  50. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuifang Hao PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hao, C., Song, D. et al. Androgen Receptor Coregulator CTBP1-AS Is Associated With Polycystic Ovary Syndrome in Chinese Women: A Preliminary Study. Reprod. Sci. 22, 829–837 (2015). https://doi.org/10.1177/1933719114565037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114565037

Keywords

Navigation