Skip to main content

Advertisement

Log in

Exposing Mouse Oocytes to Necrostatin 1 During In Vitro Maturation Improves Maturation, Survival After Vitrification, Mitochondrial Preservation, and Developmental Competence

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Necrostatin 1 (Nec1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase 1 in cell death. The biological actions of Nec1 are blocking necrotic cell death. The purpose of this study was to investigate whether adding Nec1 into in vitro maturation (IVM) media, followed by vitrification procedures, could enhance the survival and developmental competency of oocytes. Germinal vesicle oocytes were matured in IVM medium containing 2 different doses of Nec1 (0.5 and 1 μmol/L). After IVM, the oocytes were vitrified using a 2-step exposure to equilibrium and vitrification solutions. After warming, the rates of survival, fertilization, embryonic development up to blastocyst in vitro, morphology of spindle and chromosome, membrane integrity, mitochondria integrity, and several gene expressions were evaluated. The survival and developmental competency of oocytes were higher in the 1 μmol/L Nec1-treated group than control. The proportion with intact spindles/chromosomes and stable membranes was similar in all the groups. The mitochondrial integrity of all Nec1-treated groups showed a higher score with strong staining. The 1 μmol/L Nec1 showed significantly increased expressions of Mad2, Gdf9, and Bcl2. The Cirp level had a tendency to be downregulated in the 0.5 µmol/L Nec1 but upregulated in the 1 μmol/L Nec1, compared with the control. The Mtgenome expressions were significantly decreased in both Nec1 groups. The supplementation of 1 μmol/L Nec1 into the IVM medium could be beneficial for the survival and development of immature oocytes after vitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ubaldi F, Anniballo R, Romano S, et al. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod. 2010;25(5): 1199–1205.

    Article  Google Scholar 

  2. Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9): 2239–2246.

    Article  Google Scholar 

  3. Cobo A, Romero JL, Perez S, de los Santos MJ, Meseguer M, Remohi J. Storage of human oocytes in the vapor phase of nitrogen. Fertil Steril. 2010;94(5): 1903–1907.

    Article  CAS  Google Scholar 

  4. Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27(6):450–455.

    Article  CAS  Google Scholar 

  5. Smith GD, Serafini PC, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94(6): 2088–2095.

    Article  Google Scholar 

  6. Parmegiani L, Bertocci F, Garello C, Salvarani MC, Tambuscio G, Fabbri R. Efficiency of human oocyte slow freezing: results from five assisted reproduction centres. Reprod Biomed Online. 2009;18(3):352–359.

    Article  CAS  Google Scholar 

  7. Parmegiani L, Cognigni GE, Bernardi S, et al. Freezing within 2 h from oocyte retrieval increases the efficiency of human oocyte cryopreservation when using a slow freezing/rapid thawing protocol with high sucrose concentration. Hum Reprod. 2008;23(8): 1771–1777.

    Article  CAS  Google Scholar 

  8. Rao GD, Chian RC, Son WS, Gilbert L, Tan SL. Fertility preservation in women undergoing cancer treatment. Lancet. 2004; 363(9423):1829–1830.

    Article  Google Scholar 

  9. Isachenko E, Rahimi G, Isachenko V, Nawroth F. In-vitro maturation of germinal-vesicle oocytes and cryopreservation in metaphase I/II: a possible additional option to preserve fertility during ovarian tissue cryopreservation. Reprod Biomed Online. 2004;8(5):553–557.

    Article  Google Scholar 

  10. Toth TL, Lanzendorf SE, Sandow BA, et al. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil Steril. 1994;61(6):1077–1082.

    Article  CAS  Google Scholar 

  11. Son WY, Park SE, Lee KA, et al. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil Steril. 1996;66(6):995–999.

    Article  CAS  Google Scholar 

  12. Cao YX, Xing Q, Li L, et al. Comparison of survival and embryonic development in human oocytes cryopreserved by slowfreezing and vitrification. Fertil Steril. 2009;92(4):1306–1311.

    Article  Google Scholar 

  13. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11.

    Article  CAS  Google Scholar 

  14. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2013;9(3):192.

    Article  Google Scholar 

  15. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–495.

    Article  CAS  Google Scholar 

  16. Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6): 1112–1123.

    Article  CAS  Google Scholar 

  17. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009; 137(6):1100–1111.

    Article  CAS  Google Scholar 

  18. Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–336.

    Article  CAS  Google Scholar 

  19. Chang P, Dong W, Zhang M, et al. Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci. 2014;52(2):242–249.

    Article  CAS  Google Scholar 

  20. Gardner DK, Leese HJ. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil. 1990;88(1):361–368.

    Article  CAS  Google Scholar 

  21. Somfai T, Dinnyes A, Sage D, et al. Development to the blastocyst stage of parthenogenetically activated in vitro matured porcine oocytes after solid surface vitrification (SSV). Theriogenology. 2006;66(2):415–422.

    Article  Google Scholar 

  22. Jo JW, Jee BC, Suh CS, Kim SH. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS One. 2012;7(5):e37043.

    Article  CAS  Google Scholar 

  23. Gualtieri R, Iaccarino M, Mollo V, Prisco M, Iaccarino S, Talevi R. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91(4):1023–1034.

    Article  Google Scholar 

  24. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 1995;260:406–417.

    Article  CAS  Google Scholar 

  25. Jo JW, Jee BC, Lee JR, Suh CS. Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil Steril. 2011;96(5):1239–1245.

    Article  CAS  Google Scholar 

  26. Habibi A, Farrokhi N, Moreira da Silva F, et al. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet. 2010;27(11):599–604.

    Article  Google Scholar 

  27. Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol. 2002; 3(10):731–741.

    Article  CAS  Google Scholar 

  28. Wang WH, Sun QY. Meiotic spindle, spindle checkpoint and embryonic aneuploidy. Front Biosci. 2006;27(11):620–636.

    Article  Google Scholar 

  29. Juengel JL, Bodensteiner KJ, Heath DA, et al. Physiology of GDF9 and BMP15 signalling molecules. Animal Reprod Sci. 2004;82–83:447–460.

    Article  Google Scholar 

  30. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87(1):316–321.

    Article  CAS  Google Scholar 

  31. Wrenzycki C, Herrmann D, Carnwath JW, Niemann H. Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol Reprod Dev. 1999;53(1):8–18.

    Article  CAS  Google Scholar 

  32. Yang MY, Rajamahendran R. Expression of Bcl-2 and Bax proteins in relation to quality of bovine oocytes and embryos produced in vitro. Anim Reprod Sci. 2002;70(3–4):159–169.

    Article  CAS  Google Scholar 

  33. Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 1997;137(4):899–908.

    Article  CAS  Google Scholar 

  34. Zhou KW, Zheng XM, Yang ZW, Zhang L, Chen HD. Overexpression of CIRP may reduce testicular damage induced by cryptorchidism. Clin Investig Med. 2009;32(2):E103–E111.

    Article  CAS  Google Scholar 

  35. May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007;77:51–83.

    Article  CAS  Google Scholar 

  36. Steuerwald N, Barritt JA, Adler R, et al. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote. 2000;8(3):209–215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Suk Suh MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, J.W., Lee, J.R., Jee, B.C. et al. Exposing Mouse Oocytes to Necrostatin 1 During In Vitro Maturation Improves Maturation, Survival After Vitrification, Mitochondrial Preservation, and Developmental Competence. Reprod. Sci. 22, 615–625 (2015). https://doi.org/10.1177/1933719114556482

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114556482

Keywords

Navigation