Skip to main content

Advertisement

Log in

Altered Genome-Wide Methylation in Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis has been associated with aberrant methylation in the eutopic endometrium. Using a genome-wide methylation array, we identified differentially methylated genes in the endometrium from women with or without endometriosis. One hundred and twenty genes were significantly altered by >1.5-fold. In all, 59 genes were significantly hypermethylated and 61 genes were significantly hypomethylated. Changes in gene expression associated with the altered methylation status were validated using quantitative real-time polymerase chain reaction. A limited number of candidate genes are selectively methylated in the endometrium of women with endometriosis. Several genes not previously associated with endometriosis are aberrantly methylated and expressed. These include O-6-methylguanine-DNA methyltransferase, dual specificity phosphatase 22, cell division cycle associated 2, inhibitor of DNA binding 2, retinoblastoma binding protein 7, bone morphogenetic protein receptor, type 1B, tumor necrosis factor receptor 1B, zinc finger protein receptor 681, immunoglobulin superfamily, member 21, and tumor protein 73. Aberrant DNA methylation and gene expression of these genes may contribute to abnormal regulation of endometrial cell proliferation and function in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olive DL, Pritts EA. Treatment of endometriosis. N Engl J Med. 2001;345(4):266–275.

    Article  CAS  PubMed  Google Scholar 

  2. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    Article  PubMed  Google Scholar 

  3. Giudice LC. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am. 2012;39(4):535–549.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Ostet Gynecol. 1927;14:422–469.

    Article  Google Scholar 

  6. Gruenwald P. Origin of endometriosis form the mesenchyme of the celomic walls. Am J Obstet Gynecol. 1942;44:470–474.

    Article  Google Scholar 

  7. Dmowski PW, Braun DP. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):245–263.

    Article  Google Scholar 

  8. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–2086.

    Article  CAS  PubMed  Google Scholar 

  9. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Michels KB, Hunter DJ. In utero exposures and the incidence of endometriosis. Fertil Steril. 2004;82(6):1501–1508.

    Article  PubMed  Google Scholar 

  10. Rier SE. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis. Ann N Y Acad Sci. 2002;955:201–212.

    Article  CAS  PubMed  Google Scholar 

  11. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005;193(2):371–380.

    Article  CAS  PubMed  Google Scholar 

  13. Simpson JL, Elias S, Malinak LR, Buttram VC Jr. Heritable aspects of endometriosis. I. Genetic studies. Am J Obstet Gynecol. 1980;137(3):327–331.

    Article  CAS  PubMed  Google Scholar 

  14. Vigano P, Somigliana E, Vignali M, Busacca M, Blasio AM. Genetics of endometriosis: current status and prospects. Front Biosci. 2007;12:3247–3255.

    Article  CAS  PubMed  Google Scholar 

  15. Grechukhina O, Petracco R, Popkhadze S, et al. A polymorphism in a let-7 microRNA binding site of KRAS in women with endometriosis. EMBO Mol Med. 2012;4(3):206–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bischoff F, Simpson JL. Genetics of endometriosis: heritability and candidate genes. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):219–232.

    Article  PubMed  Google Scholar 

  17. Nasu K, Kawano Y, Tsukamoto Y, et al. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res. 2011;37(7):683–695.

    Article  CAS  PubMed  Google Scholar 

  18. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9(16):2395–2402.

    Article  CAS  PubMed  Google Scholar 

  20. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;(2):158–163.

    Article  CAS  Google Scholar 

  21. Robertson KD. DNA methylation and chromatin-unraveling the tangled web. Oncogene. 2002;21(35):5361–5379.

    Article  CAS  PubMed  Google Scholar 

  22. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–463.

    Article  CAS  PubMed  Google Scholar 

  23. Izawa M, Taniguchi F, Terakawa N, Harada T. Epigenetic aberration of gene expression in endometriosis. Front Biosci (Elite Ed). 2013;5:900–10.

    Article  PubMed  Google Scholar 

  24. Park JS, Lee JH, Kim M, Chang HJ, Hwang KJ, Chang KH. Endometrium from women with endometriosis shows increased proliferation activity. Fertil Steril. 2009;92(4):1246–1249.

    Article  CAS  PubMed  Google Scholar 

  25. Bulun SE, Monsavais D, Pavone ME, et al. Role of estrogen receptor-β in endometriosis. Semin Reprod Med. 2012;30(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue Q, Lin Z, Yin P, et al. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab. 2007;92(8):3261–3267.

    Article  CAS  PubMed  Google Scholar 

  27. Xue Q, Lin Z, Cheng YH, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77(4):681–687.

    Article  CAS  PubMed  Google Scholar 

  28. Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59(7 suppl):1693s–1700s.

    CAS  PubMed  Google Scholar 

  29. Risberg B, Karlsson K, Abeler V, Lagrelius A, Davidson B, Karlsson MG. Dissociated expression of Bcl-2 and Ki-67 in endometrial lesions: diagnostic and histogenetic implications. Int J Gynecol Pathol. 2002;21(2):155–160.

    Article  PubMed  Google Scholar 

  30. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril. 2007;87(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  31. Christmann M, Verbeek B, Roos WP, Kaina B. O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta. 2011;1816(2):179–190.

    CAS  PubMed  Google Scholar 

  32. Peggs AE. Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res. 2000;462(2–3):83–100.

    Article  Google Scholar 

  33. Sekine Y, Ikeda O, Hayakawa Y, et al. DUSP22/LMW-DSP2 regulates estrogen receptor-alpha-mediated signaling through dephosphorylation of Ser-118. Oncogene. 2007;26(41):6038–6049.

    Article  CAS  PubMed  Google Scholar 

  34. Uchida F, Uzawa K, Kasamatsu A, et al. Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis. PLoS One. 2013;8(2):e56381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang P, Zhao Y, Sun XH. Notch-regulated periphery B cell differentiation involves suppression of e protein function. J Immunol. 2013;191(2):726–736.

    Article  CAS  PubMed  Google Scholar 

  36. So T, Croft M. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front Immunol. 2013;4:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schall TJ, Lewis M, Koller KJ, et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell. 1990;61(2):361–370.

    Article  CAS  PubMed  Google Scholar 

  38. Dang DT, Pevsner J, Yang VW. The biology of the mammalian Krüppel-like family of transcription factors. Int J Biochem Cell Biol. 2000;32(11–12): 1103–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh H, Aplin JD. Adhesion molecues in endometrial epithelium: tissue integrity and embryo implantation. J Anat. 2009;215(1):3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Golias C, Batistatou A, Bablekos G, et al. Physiology and pathophysiology of selectins, integrins, and IGSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes. 2011;18(3):19–32.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, He X, Yu Q, Eng C. Androgen receptor-induced tumor suppressor, KLLN, inhibits breast cancer growth and transcriptionally activates p53/p73-mediated apoptosis in breast carcinomas. Hum Mol Genet. 2013;22(11):2263–2272.

    Article  CAS  PubMed  Google Scholar 

  42. Jacobs DI, Hansen J, Fu A, et al. Methylation alterations at imprinted genes detected among long-term shiftworkers. Environ Mol Mutagen. 2013;54(2):141–146.

    Article  CAS  PubMed  Google Scholar 

  43. Rodhe J, Kavanagh E, Joseph B. TAp73β-mediated suppression of cell migration requires p57Kip2 control of actin cytoskeleton dynamics. Oncotarget. 2013;4(2):289–297.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009;80(1):79–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ebata A, Suzuki T, Takagi K, et al. Oestrogen-induced genes in ductal carcinoma in situ: their comparison with invasive ductal carcinoma. Endocr Relat Cancer. 2012;19(4):485–496.

    Article  CAS  PubMed  Google Scholar 

  46. Miglori V, Müller J, Phalke S, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol. 2012;19(2):136–144.

    Article  CAS  Google Scholar 

  47. Yang J, Kiefer S, Rauchman M. Characterization of the gene encoding mouse retinoblastoma binding protei-7, a component of chromatin-remodeling complexes. Genomics. 2002;80(4):407–415.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang TF, Yu SQ, Wang ZY. RbAp46 inhibits estrogenstimulated progression of neoplastigenic breast epithelial cells. Anticancer Res. 2007;27(5A):3205–3209.

    CAS  PubMed  Google Scholar 

  49. Buck-Koehntop BA, Stanfield RL, Ekiert DC, et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci USA. 2012;109(38):15229–15234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van De Stolpe A, Van Der Saag PT. Intercellular adhesion molecule-1. J Mol Med (Berl). 1996;74(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Niu Y, Feng J, Guo H, Ye X, Cui H. Use of proteomic analysis of endometriosis to identify different protein expression in patients with endometriosis versus normal controls. Fertil Steril. 2006;86(2):274–282.

    Article  CAS  PubMed  Google Scholar 

  52. Wong W, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J Cell Biol. 2012;2012:340296.

    Google Scholar 

  53. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 2010;93(6):2027–2034.

    Article  CAS  PubMed  Google Scholar 

  54. Kim JJ, Taylor HS, Lu Z, et al. Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod. 2007;13(5):323–332.

    Article  CAS  PubMed  Google Scholar 

  55. Borghese B, Barbaux S, Mondon F, et al. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol. 2010;24(9):1872–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allen C, Hopewell S, Prentice A, Gregory D. Nonsteroidal antiinflammatory drugs for pain in women with endometriosis. Cochrane Database Syst. 2009;(2):CD004753.

  57. Al Kadri H, Hassan S, Al-Fozan HM, Hajeer A. Hormone therapy for endometriosis and surgical menopause. Cochrane Database Syst. 2009;(1):CD005997.

  58. Nawathe A, Patwardhan S, Yates D, Harrison GR, Khan KS. Systematic review of the effects of aromatase inhibitors on pain associated with endometriosis. BJOG. 2008;115(7):818–822.

    Article  CAS  PubMed  Google Scholar 

  59. Rodgers AK, Falcone T. Treatment strategies for endometriosis. Expert Opin Pharmacother. 2009;9(2):243–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh S. Taylor MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, H., Ilagan, Y., Krikun, G. et al. Altered Genome-Wide Methylation in Endometriosis. Reprod. Sci. 21, 1237–1243 (2014). https://doi.org/10.1177/1933719114532841

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114532841

Keywords

Navigation