Skip to main content

Advertisement

Log in

The Effect of Progesterone Levels and Pregnancy on HIV-1 Coreceptor Expression

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The upregulation of HIV-1 co-receptor expression during certain clinical settings may explain the predisposition of individuals to enhanced HIV-1 acquisition. We sought to determine the effect of estrogen and progesterone on the HIV-1 coreceptors, CCR5 and CXCR4. Co-receptor expression on CD3- and CD14-positive cells obtained systemically and locally (genital tissue in women) was determined in men, pre- and post-menopausal women, pregnant women in each trimester and in labor. CCR5 on both CD3- and CD14-positive cells was highest in pregnant women, and increased as gestation advanced (P < .01 and P < .001, respectively). Progesterone levels were significantly associated with CCR5 expression on PBMCs (P < .03 for CD3-positive, and P < .002 for CD14-positive cells) and from cells isolated from tissue (P < .001).CCR5 mRNA expression correlated with the cell suface marker expression from blood and tissue. These findings suggest that pregnancy and other high progesterone states may predispose women to HIV-1 acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin JL Jr, Nyange PM, Richardson BA, et al. Hormonal contraception, sexually transmitted diseases, and risk of heterosexual transmission of human immunodeficiency virus type 1. J Infect Dis. 1998;178:1053–1059.

    Article  PubMed  Google Scholar 

  2. Ungchusak K, Rehle T, Thammapornpilap P, Spiegelman D, Brinkmann U, Siraprapasiri T. Determinants of HIV infection among female commercial sex workers in northeastern Thailand: results from a longitudinal study. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;12:500–507.

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Reilly M, Kreiss J. Risk of HIV infection in oral contraceptive pill users: a meta-analysis. J Acquired Immune Defic Syndr. 1999;21:51–58.

    Article  CAS  Google Scholar 

  4. Kiddugavu M, Makumbi F, Wawer MJ, et al. for the Rakai Project Study Group. Hormonal contraceptive use and HIV-1 infection in a population-based cohort in Rakai, Uganda. AIDS. 2003;17:233–240.

    Article  PubMed  Google Scholar 

  5. Plummer FA, Simonsen JN, Cameron DW, et al. Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis. 1991;163:233–239.

    Article  CAS  PubMed  Google Scholar 

  6. Lavreys L, Baeten JM, Martin HL Jr, et al. Hormonal contraception and risk of HIV-1 acquisition: results of a 10-year prospective study. AIDS. 2004;18:695–697.

    Article  PubMed  Google Scholar 

  7. Criniti A, Mwachari CW, Meier AS, et al. Association of hormonal contraception and HIV-seroprevalence in Nairobi, Kenya. AIDS. 2003;17:2667–2669.

    Article  PubMed  Google Scholar 

  8. Wang CC, McClelland RS, Overbaugh J, et al. The effect of hormonal contraception on genital tract shedding of HIV-1. AIDS. 2004;18:205–209.

    Article  PubMed  Google Scholar 

  9. Marx PA, Spira AI, Gettie A, et al. Progesterone implants enhance SIV vaginal transmission and early virus load. Nat Med. 1996;2:1084–1089.

    Article  CAS  PubMed  Google Scholar 

  10. Gray RH, Li Z, Kigozi G, et al. Increased risk of incident HIV during pregnancy in Rakai, Uganda: a prospective study. Lancet. 2005;366:1182–1188.

    Article  PubMed  Google Scholar 

  11. Taha TE, Dallabetta GA, Hoover DR, et al. Trends of HIV-1 and sexually transmitted diseases among pregnant and postpartum women in urban Malawi. AIDS. 1998;12:197–203.

    Article  CAS  PubMed  Google Scholar 

  12. Leroy V, Van de Perre P, Lepage P, et al. Seroincidence of HIV-1 infection in African women of reproductive age: a prospective cohort study in Kigali, Rwanda, 1988–1992. AIDS. 1994;8:983–986.

    Article  CAS  PubMed  Google Scholar 

  13. Ghanem KG, Shah N, Klein RS, et al. for the HIV Epidemiology Research Study Group. Influence of sex hormones, HIV status, and concomitant sexually transmitted infection on cervicovaginal inflammation. J Infect Dis. 2005;191: 358–386.

    Article  CAS  PubMed  Google Scholar 

  14. Whitelaw PF, Croy BA. Granulated lymphocytes of pregnancy. Placenta. 1996;17:533–543.

    Article  CAS  PubMed  Google Scholar 

  15. Clemens LE, Siiteri PK, Stites DP. Mechanism of immunosuppression of progesterone on maternal lymphocyte activation during pregnancy. J Immunol. 1979;122:1978–1985.

    CAS  PubMed  Google Scholar 

  16. Mannel DN, Falk W, Yron I. Inhibition of murine cytotoxic T cell responses by progesterone. Immunol Lett. 1990;26:89–94.

    Article  CAS  PubMed  Google Scholar 

  17. White HD, Crassi KM, Given AL, et al. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol. 1997;158:3017–3027.

    CAS  PubMed  Google Scholar 

  18. Piccinni MP, Guidi MG, Bisagittal R, et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol. 1995;155:128–133.

    CAS  PubMed  Google Scholar 

  19. Vassiliadou N, Tucker L, Anderson DJ. Progesterone-induced inhibition of chemokine receptor expression on peripheral blood mononuclear cells correlates with reduced HIV-1 infectability in vitro. J Immunol. 1999;162:7510–7518.

    CAS  PubMed  Google Scholar 

  20. Dalgleish AG, Beverly PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (R4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–767.

    Article  CAS  PubMed  Google Scholar 

  21. Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984;312:767–768.

    Article  CAS  PubMed  Google Scholar 

  22. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JKA. Binding of HTLV-II/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science. 1986;231:382–385.

    Article  CAS  PubMed  Google Scholar 

  23. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science. 1996;171:872–877.

    Article  Google Scholar 

  24. Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW. A seven transmembrane domain receptor involved in fusion and entry of T-cell tropic human immunodeficiency virus type-1 strains. J Virol. 1996;70:6288–6295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paxton WA, Dragic T, Koup RA, Moore JP. Perspective: research highlights at the Aaron Diamond AIDS Research Center. AIDS Res Hum Retroviruses. 1996;12:1203–1207.

    Article  CAS  PubMed  Google Scholar 

  26. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. Molecular cloning and functional expression of a new CC-chemokine receptor gene, CC-CCR5. Biochemistry. 1996;11:3362–3367.

    Article  Google Scholar 

  27. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CXR-5. Nature. 1996;381:667–673.

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996;2:1240–1243.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson DJ, Fichorova R, Haimovici F, Wang YM, Pudney J. B-chemokines and their receptors in the lower female genital tract. J Soc Gynecol Invest. 1997;4:201A.

  30. Moore JP, Trkola A, Dragic T. Co-receptors for HIV-1 entry. Curr Opin Immunol. 1997;9:551–562.

    Article  CAS  PubMed  Google Scholar 

  31. Rottman JB, Ganley KP, Williams K, Wu L, Mackay CR, Ringler DJ. Cellular localization of the chemokine receptor CCR5: correlation to cellular targets of HIV-1 infection. Am J Pathol. 1997;151:1341–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Choe H, Farzan M, Sun Y, et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85:1135–1148.

    Article  CAS  PubMed  Google Scholar 

  33. Deng H, Liu R, Ellmeier W, et al. Identification of a major coreceptor for primary isolates of HIV-1. Nature. 1996;381: 661–666.

    Article  CAS  PubMed  Google Scholar 

  34. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA. 1997;94:125–130.

    Article  Google Scholar 

  35. Grivel JC, Margolis LB. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med. 1999;5:344–346.

    Article  CAS  PubMed  Google Scholar 

  36. Patterson BK, Landay A, Andersson J, et al. Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am J Pathol. 1998;153:481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L, He T, Talal A, Wang G, Frankel SS, Ho DD. In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J Virol. 1998;72:5035–5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hladik F, Lentz G, Delpit E, McElroy A, McElrath MJ. Coex-pression of CCR5 and IL-2 in human genital but not blood T cells: implications for the ontogeny of the CCR5 Th1 phenotype. J Immunol. 1999;163:2306–2313.

    CAS  PubMed  Google Scholar 

  39. Prakash M, Kapembwa MS, Gotch F, Patterson S. Oral contraceptive use induces upregulation of the CCR5 chemokine receptor on CD4(+) T cells in the cervical epithelium of healthy women. J Reprod Immunol. 202;54:117–131.

  40. Yeaman GR, Howell AL, Weldon S, et al. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection. Immunology. 2003;109:137–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wira C, Fahey J, Wallace P, Yeaman G. Effect of the menstrual cycle on immunological parameters in the human female reproductive tract. J Acquir Immune Defic Syndr. 2005;38:S34–S36.

    Article  PubMed  Google Scholar 

  42. Tells FL, Hernandez DM. Performance evaluation of nine hormonal assays on the Immulite 2000 Immunoassay System. Clin Chem Lab Med. 2000;38:1039–1042.

    Google Scholar 

  43. Paxton WA, Liu R, Kang S, et al. Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology. 1998;244:66–73.

    Article  CAS  PubMed  Google Scholar 

  44. Øvstebo R, Haug KB, Lande K, Pierulf P. PCR-based calibration curves for studies of quantitative gene expression in human monocytes: development and evaluation. Clin Chem. 2003;49:425–432.

    Article  PubMed  Google Scholar 

  45. Mestecky J, Fultz PN. Mucosal immune system of the human genital tract. J Infect Dis. 1999;179:S470–S474.

    Article  PubMed  Google Scholar 

  46. Centers for Disease Control and Prevention. HIV/AIDS among women. Available at: http://www.cdc.gov/hiv/pubs/facts/women.htm. Accessed April 11, 2006.

  47. Klebanoff SJ, Watts DH, Mehlin C, Headley CM. Lactobacilli and vaginal host defense: activation of the human immunodeficiency virus type 1 long terminal repeat, cytokine production, and NF-kappaB. J Infect Dis. 1999;179:643–660.

    Article  Google Scholar 

  48. Klebanoff SJ, Hillier SL, Eschenbach DA, Waltersdorph AM. Control of the microbial flora of the vagina by H2)2-generating lactobacilli. J Infect Dis. 1991;164:94–100.

    Article  CAS  PubMed  Google Scholar 

  49. Fichorova RN, Anderson DJ. Differential expression of immunobiological mediators by immortalized human cervical and vaginal epithelial cells. Biol Reprod. 1999;60:508–514.

    Article  CAS  PubMed  Google Scholar 

  50. Pudney J, Quale AJ, Anderson DJ. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod. 2005;73:1253–1263.

    Article  CAS  PubMed  Google Scholar 

  51. Kozlowski PA, Neutra MR. The role of mucosal immunity in prevention of HIV transmission. Curr Molec Med. 2003;3: 217–218.

    Article  CAS  Google Scholar 

  52. Kalams SA. Cellular immunity for prevention and clearance of HIV infection. Curr Molec Med. 2003;3:195–208.

    Article  CAS  Google Scholar 

  53. Anderson DJ, Politch JA, Tucker LD, et al. Quantitation of mediators of inflammation and immunity in genital tract secretions and their relevance to HIV type 1 transmission. AIDS Res Hum Retroviruses. 1998;14:S43–S49.

    Article  CAS  PubMed  Google Scholar 

  54. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTS, MIP-1α, MIP-1β as the major HIV suppressive factor produced by CD8+ T cells. Science. 1995;270:1811–1815.

    Article  CAS  PubMed  Google Scholar 

  55. Smith SM, Baskin GB, Marx PA. Estrogen protects against vaginal transmission of simian immunodeficiency virus. J Infect Dis. 2000;182:708–715.

    Article  CAS  PubMed  Google Scholar 

  56. Ochiel DO, Wango EO, Kigondu CS, Otsyula MG. Effect of menstrual cycle on mucosal immunity to SHIV within the reproductive tract of baboons (Papio anubis): preliminary findings. J Med Primatol. 2003;32:161–169.

    Article  CAS  PubMed  Google Scholar 

  57. Ildgruben AK, Sjoberg IM, Hammarstrom ML. Influence of hormonal contraceptives on the immune cells and thickness of human vaginal epithelium. Obstet Gynecol. 2003;102: 571–582.

    CAS  PubMed  Google Scholar 

  58. Coombs RW, Reichelderfer PS, Landay AL. Recent observations on HIV type-1 infection in the genital tract of men and women. AIDS. 2003;17:455–480.

    Article  PubMed  Google Scholar 

  59. Patton DL, Thwin SS, Meier A, Hooton TM, Stapleton AE, Eschenbach DA. Epithelial cell layer thickness and immune cell population in the normal human vagina at different stages of the menstrual cycle. Am J Obstet Gynecol. 2000;183:967–973.

    Article  CAS  PubMed  Google Scholar 

  60. Kutteh WH, Prince SJ, Hammond KR, Kutteh CC, Mestecky J. Variations in immunoglobulins and IgA subclasses of human uterine cervical secretions around the time of ovulation. Clin Exp Immunol. 1996;104:538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu FX, Ma Z, Rourke T, Srinivasan S. McChesney M, Miller CJ. Immunoglobulin concentrations and antigen-specific antibody levels in cervicovaginal lavages of rhesus macaques are influenced by the stage of the menstrual cycle. Infect Immun. 1999;67:6321–6328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Givan AL, White HD, Stern JE, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix and vagina. Am J Reprod Immunol. 1997;38:350–359.

    Article  CAS  PubMed  Google Scholar 

  63. Quayle AJ, Porter EM, Nussbaum AA, et al. Gene expression, immunolocalization, and secretion of human defenxin-5 in human female reproductive tract. Am J Pathol. 1998;152: 1247–1258.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fahey JV, Wira CR. Effect of menstrual status on antibacterial activity and secretory leukocyte protease inhibitor production by human uterine epithelial cells in culture. J Infect Dis. 2002;185:1606–1613.

    Article  CAS  PubMed  Google Scholar 

  65. Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:1681–1691.

    Article  CAS  PubMed  Google Scholar 

  66. Dominguez F, Galan A, Martin JJ, Remohi J, Pellicer A, Simon C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol Hum Reprod. 2003;9:189–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne S. Sheffield MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheffield, J.S., Wendel, G.D., McIntire, D.D. et al. The Effect of Progesterone Levels and Pregnancy on HIV-1 Coreceptor Expression. Reprod. Sci. 16, 20–31 (2009). https://doi.org/10.1177/1933719108325510

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108325510

Key words

Navigation