Skip to main content
Log in

Adaptive Designs: Terminology and Classification

  • Adaptive Design
  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

In this article, we give a general definition of adaptive designs, describe their structure, and provide a classification of adaptive designs, mapping them against the drug development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberger WF, Lachin JM. Randomization in Clinical Trials: Theory and Practice. New York: Wiley; 2002.

    Book  Google Scholar 

  2. Taves DR. Minimization: a new method of assigning patients to treatment and control groups. Clin Pharmacol Ther. 1974;15:443–453.

    Article  CAS  PubMed  Google Scholar 

  3. Zelen M. The randomization and stratification of patients to clinical trials. J Chronic Dis. 1974;28:365–375.

    Article  Google Scholar 

  4. Pocock SJ, Simon R. Sequential treatment assignment with balancing prognostic factors in the controlled clinical trials. Biometrics. 1975;31:103–115.

    Article  CAS  PubMed  Google Scholar 

  5. Wei LJ. An application of an urn model to the design of sequential controlled clinical trials. J Am Stat Assoc. 1978;73:559–563.

    Article  Google Scholar 

  6. Atkinson AC. Optimum biased coin designs for sequential clinical trials with prognostic factors. Biometrika. 1982;69:61–67.

    Article  Google Scholar 

  7. Atkinson AC. Optimum biased-coin designs for sequential treatment allocation with covariate information. Stat Med. 1999;18:1741–1752.

    Article  CAS  PubMed  Google Scholar 

  8. Robbins H. Some aspects of the sequential design of experiments. Bull Am Math Soc. 1952;58:527–535.

    Article  Google Scholar 

  9. Zelen M. Play the winner and the controlled clinical trial. J Am Stat Assn. 1969;64:131–146.

    Article  Google Scholar 

  10. Eisele JR. The doubly adaptive biased coin design for sequential clinical trials. J Stat Plann Inference. 1994;38:249–261.

    Article  Google Scholar 

  11. Berry D. Adaptive trials and Bayesian statistics in drug development. Biopharm Rep. 2001;9:1–11.

    Google Scholar 

  12. Berry D. Bayesian statistics and the efficiency and ethics of clinical trials. Stat Sci. 2004;19:175–187.

    Article  Google Scholar 

  13. Sampson AR, Sill MW. Drop-the-Losers design: normal case. Biometrical J. 2005;47:257–268.

    Article  Google Scholar 

  14. Birkett MA, Day SJ. Internal pilot studies for estimating sample size. Stat Med. 1994;13:2455–2463.

    Article  CAS  PubMed  Google Scholar 

  15. Herson J, Wittes J. The use of interim analysis for sample size adjustment. Drug Inf J. 1993;27:753–760.

    Article  Google Scholar 

  16. Gould AL. Interim analysis for monitoring clinical trials that do not materially affect the type I error rate. Stat Med. 1992;11:53–66.

    Google Scholar 

  17. Gould AL, Shih WJ. Sample size reestimation without unblinding for normally distributed outcomes with unknown variance. Comtnun Stat Theory Methods. 1992;21:2833–2853.

    Article  Google Scholar 

  18. Wittes JT, Schabenberger O, Zucker DM, Brittain E, Proschan M. Internal pilot studies I: type 1 error rate of the naive t-test. Stat Med. 1999;18:3481–3491.

    Article  CAS  PubMed  Google Scholar 

  19. Zucker DM, Wittes JT, Schabenberger O, Brittain E. Internal pilot studies II: comparison of various procedures. Stat Med. 1999;18:3493–3509.

    Article  CAS  PubMed  Google Scholar 

  20. Kieser M, Friede T. Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Stat Med. 2000;19:901–911.

    Article  CAS  PubMed  Google Scholar 

  21. Kieser M, Friede T. Blinded sample size reestimation in multiarmed clinical trials. Drug Inf J. 2000;34:455–460.

    Article  Google Scholar 

  22. Gould L. Sample-size re-estimation: recent developments and practical considerations. Stat Med. 2001;20:2625–2643.

    Article  CAS  PubMed  Google Scholar 

  23. Friede T, Kieser M. A comparison of methods for adaptive sample size adjustment. Stat Med. 2001;20:3861–3873.

    Article  CAS  PubMed  Google Scholar 

  24. Mehta CR, Tsiatis AA. Flexible sample size considerations using information-based interim monitoring. Drug Inf J. 2001;35:1095–1112.

    Article  Google Scholar 

  25. Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–663.

    Article  Google Scholar 

  26. Schmitz N. Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statistics, vol. 79. New York: Springer; 1993.

    Book  Google Scholar 

  27. Cressie N, Morgan PB. The VPRT: a sequential testing procedure dominating the SPRT. Econometric Theory. 1993;9:431–450.

    Article  Google Scholar 

  28. Morgan PB, Cressie N. A comparison of cost-efficiencies of the sequential, group-sequential, and variable-sample-size-sequential probability ratio tests. Scand J Stat. 1997;24:181–200.

    Article  Google Scholar 

  29. Bartroff J. Optimal multistage sampling in a boundary-crossing problem. Sequential Anal. 2006;25:59–84.

    Article  Google Scholar 

  30. Jennison C, Turnbull BW. Efficient group sequential designs when there are several effect sizes under consideration. Stat Med. 2006;25:917–932.

    Article  PubMed  Google Scholar 

  31. Posch M, Bauer P. Adaptive two stage designs and the conditional error function. Biometrical J. 1999;41:689–696.

    Article  Google Scholar 

  32. Posch M, Bauer P. Interim analysis and sample size assessment. Biometrics. 2000;56:1170–1176.

    Article  CAS  PubMed  Google Scholar 

  33. Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics. 1995;51:1315–1324.

    Article  CAS  PubMed  Google Scholar 

  34. Cui L, Hung HMJ, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics. 1999;55:853–857.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Q, Chi GYH. On sample size and inference for two-stage adaptive designs. Biometrics. 2001;57:172–177.

    Article  CAS  PubMed  Google Scholar 

  36. Li G, Shih WJ, Xie T, Lu J. A sample size adjustment procedure for clinical trials based on conditional power. Biostatistics. 2002;3:277–287.

    Article  PubMed  Google Scholar 

  37. Bauer P, Koenig F. The reassessment of trial perspectives from interim data—a critical view. Stat Med. 2006;25:23–36.

    Article  PubMed  Google Scholar 

  38. Posch M, Bauer P, Brannath W. Issues in designing flexible trials. Stat Med. 2003;22:953–969.

    Article  PubMed  Google Scholar 

  39. Kittelson JM, Emerson SS. A unifying family of group sequential test designs. Biometrics. 1999;55:874–882.

    Article  CAS  PubMed  Google Scholar 

  40. Jennison C, Turnbull BW. Group Sequential Methods With Applications to Clinical Trials. Boca Raton, FL: Chapman and Hall; 2000.

    Google Scholar 

  41. Whitehead J. The Design and Analysis of Sequential Clinical Trials. 2nd ed. New York: Wiley; 1997.

    Google Scholar 

  42. Spiegelhalter D, Freedman L, Blackburn P. Monitoring clinical trials: conditional or predictive power? Control Clin Trials. 1986;7:8–17.

    Article  CAS  PubMed  Google Scholar 

  43. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. New York: Wiley; 2004.

    Google Scholar 

  44. Wang SJ., Hung HMJ, Tsong Y, Cui L. Group sequential test strategies for superiority and non-inferiority hypotheses in active controlled clinical trials. Stat Med. 2001;20:1903–1912.

    Article  CAS  PubMed  Google Scholar 

  45. Brannath W, Bauer P, Maurer W, Posch M. Sequential tests for non-inferiority and superiority. Biometrics. 2003;59:106–114.

    Article  CAS  PubMed  Google Scholar 

  46. Kropf S, Hommel G, Schmidt U, Brickwedel J, Jepsen MS. Multiple comparison of treatments with stable multivariate tests in a two-stage adaptive design, including a test for non-inferiority. Biometrical J. 2000;42:951–965.

    Article  Google Scholar 

  47. Hommel G, Kropf S. Clinical trials with an adaptive choice of hypotheses. Drug Inf J. 2001;35:1423–1429.

    Article  Google Scholar 

  48. Lang T, Auterith A, Bauer P. Trend tests with adaptive scoring. Biometrical J. 2000;42:1007–1020.

    Article  Google Scholar 

  49. Lawrence J. Design of clinical trials using an adaptive test statistics. Pharm Stat. 2002;1:97–106.

    Article  Google Scholar 

  50. Neuhäuser M. An adaptive location-scale test. Biometrical J. 2001;43:809–819.

    Article  Google Scholar 

  51. Wang SJ, Hung HMJ. Adaptive covariate adjustment in clinical trials. J Biopharm Stat. 2005;15:605–612.

    Article  PubMed  Google Scholar 

  52. Hommel G. Adaptive modifications of hypotheses after an interim analysis. Biometrical J. 2001;43:581–589.

    Article  Google Scholar 

  53. Offen W, Chuang-Stein C, Dmitrienko A, et al. Multiple co-primary endpoints: medical and statistical solutions. Drug Inf J. 2006; in press.

    Google Scholar 

  54. Kieser M, Bauer P, Lehmacher W. Inference on multiple endpoints in clinical trials with adaptive interim analyses. Biometrical J. 1999;41:261–277.

    Article  Google Scholar 

  55. Inoue LYT, Thall PF, Berry DA. Seamlessly expanding a randomized phase II trial to phase III. Biometrics. 2002;58:823–831.

    Article  PubMed  Google Scholar 

  56. MUller HH, Schafer H. Adaptive group sequential designs for clinical trials: combining the advantages of adaptive and of classical group sequential approaches. Biometrics. 2001;57:886–891.

    Article  CAS  PubMed  Google Scholar 

  57. Gehan EA. The determination of number of patients in a follow-up trial of a new chemotherapeutic agent. J Chronic Dis. 1961;13:346–353.

    Article  CAS  PubMed  Google Scholar 

  58. Chen TT. Optimal three-stage designs for phase II cancer trials. Biometrics. 1997;43:865–874.

    Google Scholar 

  59. Chen S, Soong SJ, Wheeler RH. An efficient multi-stage procedure for phase II clinical trials that have high response rate objectives. Controlled Clin Trials. 1994;15:277–283.

    Article  CAS  PubMed  Google Scholar 

  60. Fleming TR. One-sample multiple testing procedure for phase II clinical trials. Biometrics. 1982;38:143–151.

    Article  CAS  PubMed  Google Scholar 

  61. Simon R. Optimal two-stage designs for phase II clinical trials. Controlled Clin Trials. 1989;10:1–10.

    Article  CAS  PubMed  Google Scholar 

  62. Banerjee A, Tsiatis AA. Adaptive two-stage designs in phase II clinical trials. Stat Med. 2006;25: in press.

    Google Scholar 

  63. Thall PF, Simon R. Practical Bayesian guidelines for phase IIB clinical trials. Biometrics. 1994;50:337–349.

    Article  CAS  PubMed  Google Scholar 

  64. Wang YG, Leung DHY. An optimal design for screen trials. Biometrics. 1998;54:243–250.

    Article  CAS  PubMed  Google Scholar 

  65. Yao TJ, Venkatraman E. Optimal two-stage design for a series of pilot trials of new agents. Biometrics. 1998;54:1183–1189.

    Article  CAS  PubMed  Google Scholar 

  66. Hardwick J, Stout QF. Optimal few-stage designs. J Stat Plann Inference. 2002;104:121–145.

    Article  Google Scholar 

  67. Siegmund D. Sequential Analysis. Tests and Confidence Intervals. New York: Springer; 1985.

    Google Scholar 

  68. Haybittle J. Repeated assessment of results in clinical trials of cancer treatment. Br ) Radiol. 1971;44:793–797.

    Article  CAS  Google Scholar 

  69. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–556.

    Article  PubMed  Google Scholar 

  70. Bauer P. Multistage testing with adaptive designs. Biom Inform Med Biol. 1989;20:130–148.

    Google Scholar 

  71. Bauer P, Kfihne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1994;50:1029–1041.

    Article  CAS  PubMed  Google Scholar 

  72. Fisher LD. Self-designing clinical trials. Stat Med. 1998;17:1551–1562.

    Article  CAS  PubMed  Google Scholar 

  73. Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics. 1999;55:1286–1290.

    Article  CAS  PubMed  Google Scholar 

  74. Brannath W, Posch M, Bauer P. Recursive combination tests. J Am Stat Assoc. 2002;97:236–244.

    Article  Google Scholar 

  75. MUller HH, Schafer H. A general statistical principle for changing a design any time during the course of a trial. Stat Med. 2004;23:2497–2508.

    Article  PubMed  Google Scholar 

  76. MUller HH, Schafer H. Construction of group sequential designs in clinical trials on the basis of detectable treatment differences. Stat Med. 2004;23:1413–1424.

    Article  PubMed  Google Scholar 

  77. Bauer P, Röhmel J. An adaptive method for establishing a dose-response relationship. Stat Med. 1995;14:1595–1607.

    Article  CAS  PubMed  Google Scholar 

  78. Bauer P, Kieser M. Combining different phases in the development of medical treatments within a single trial. Stat Med. 1999;18:1833–1848.

    Article  CAS  PubMed  Google Scholar 

  79. Lehmacher W, Kieser M, Hothorn L. Sequential and multiple testing for dose-response analysis. Drug lnf J. 2000;34:591–597.

    Article  Google Scholar 

  80. Liu Q, Proschan MA, Pledger GW. A unified theory of two-stage adaptive designs. J Am Stat Assoc. 2002;97:1034–1041.

    Article  Google Scholar 

  81. Fedorov V, Hackl P. Model-Oriented Design of Experiments. New York: Springer; 1997.

    Book  Google Scholar 

  82. Fedorov V, Leonov S. Optimal design for dose response experiments: a model-oriented approach. Drug Inf J. 2001;35:1373–1383.

    Article  Google Scholar 

  83. Fedorov V, Leonov S. Response driven designs in drug development. In: Wong WK, Berger M, eds. Applied Optimal Designs. New York: Wiley; 2005:103–136.

    Chapter  Google Scholar 

  84. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics. 1990;46:33–48.

    Article  PubMed  Google Scholar 

  85. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med. 1998;17:1103–1120.

    Article  CAS  PubMed  Google Scholar 

  86. Haines LM, Perevozskaya I, Rosenberger WF. Bayesian optimal designs for phase I clinical trials. Biometrics. 2003;59:591–600.

    Article  PubMed  Google Scholar 

  87. Whitehead J, Williamson D. An evaluation of Bayesian decision procedures for dose-finding studies. J Biopharm Stat. 1998;8:445–467.

    Article  CAS  PubMed  Google Scholar 

  88. Pocock SJ. Clinical Trials. Chichester, UK: Wiley; 1983.

    Google Scholar 

  89. Dragalin V, Fedorov V. Adaptive designs for dosefinding based on efficacy-toxicity response. J Stat Plarm Inference. 2006;136:1800–1823.

    Article  Google Scholar 

  90. Edler L. Overview of phase I trials. In: Crowley J, ed. Statistics in Clinical Oncology. New York: Dekker; 2001:1–34.

    Google Scholar 

  91. O’Quigley J. Dose-finding designs using continual reassessment method. In: Crowley J, ed. Statistics in Clinical Oncology. New York: Dekker; 2001:35–72.

    Google Scholar 

  92. Storer BE. Choosing a phase I design. In: Crowley J, ed. Statistics in Clinical Oncology. New York: Dekker; 2001:73–91.

    Google Scholar 

  93. Dragalin V, Fedorov V, Wu Y. Adaptive designs for selecting drug combinations based on efficacy-toxicity response. J Stat Plann Inference. 2006; in press.

    Google Scholar 

  94. Thall P, Russell K. A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in phase I/II clinical trials. Biometrics. 1998;54:251–264.

    Article  CAS  PubMed  Google Scholar 

  95. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 2004:60:684–693.

    Article  PubMed  Google Scholar 

  96. O’Quigley J, Hughes M, Fenton T. Dose finding designs for HIV studies. Biometrics. 2001;57:1018–1029.

    Article  PubMed  Google Scholar 

  97. Braun T. The bivariate continual reassessment method: extending the CRM to phase I trials of two competing outcomes. Controlled Clin Trials. 2002;23:240–256.

    Article  PubMed  Google Scholar 

  98. Whitehead J, Zhou Y, Stevens J, Blakey G. An evaluation of a Bayesian method of dose escalation based on bivariate binary responses. J Biopharm Stat. 2004;14:969–983.

    Article  PubMed  Google Scholar 

  99. Bekele BN, Shen Y. A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. Biometrics. 2005;61:343–354.

    Article  PubMed  Google Scholar 

  100. Thall P, Milliken RE, Mueller P, Lee SJ. Dosefinding with two agents in phase I oncology trials. Biometrics. 2003;59:487–496.

    Article  PubMed  Google Scholar 

  101. Gaydos B, Bedding A, Berry D, et al. Adaptive dose-response finding studies. Drug Inf J. 2006;40:451–461.

    Article  Google Scholar 

  102. Maca J, Bhattacharya S, Dragalin V, Gallo P, Krams M. Adaptive seamless phase 11/111 designs-background, operational aspects, and examples. Drug Inf J. 2006;40:463–473.

    Article  Google Scholar 

  103. Quinlan JA, Krams M. Implementing adaptive designs: logistical and operational considerations. Drug lnf J. 2006;40:437–444.

    Article  Google Scholar 

  104. US Food and Drug Administration. Critical path opportunity list. 2006. Available at: http://www.fda.gov/oc/initiatives/criticalpath/reporls/opp_list.pdf. Accessed August 15, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragalin, V. Adaptive Designs: Terminology and Classification. Ther Innov Regul Sci 40, 425–435 (2006). https://doi.org/10.1177/216847900604000408

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/216847900604000408

Key Words

Navigation