Skip to main content

Advertisement

Log in

Effects of Irisin and Exercise on Metabolic Parameters and Reproductive Hormone Levels in High-Fat Diet-Induced Obese Female Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

It has been documented that exogenously administered irisin (1010 fibronectin-type III domain-containing 5 [FNDC5]), which is a new polypeptide hormone, induces the browning of subcutaneous fat and thermogenesis. In this study, effects of physical activity and exogenous administration of irisin were investigated on parameters related with reproduction and metabolism in the high-fat diet-induced obesity model of the female C57BL/6J mice. Sixty mice were gathered at age approximately 5 to 6weeks and were divided into 3 groups. Control group remained sedentary. Irisin group remained also sedentary but intravenously received 1010 FNDC5-expressing adenovirus after 20 weeks. Exercise group performed treadmill after 6 weeks. All mice were sacrificed 22 to 23 weeks after the start of the study. There was a significantly greater A weight in the controls compared with the irisin and exercise groups (P <.05). Glucose and insulin levels were significantly higher in the controls (P <.05). The serum irisin level was significantly higher in the exercise group (P <.05). Serum luteinizing hormone levels were significantly increased in the irisin group (P <.05). Serum anti-Miillerian hormone levels were significantly higher in irisin and exercise groups (P <.05). There were significant negative correlations between serum irisin levels and A weight and homeostatic model assessment of insulin resistance (r = -0.327, r = -0.297, respectively; P <.05 for both). The numbers of primordial follicles per ovary were similar (P >.05), whereas primary and secondary follicles per ovary were higher in the irisin and exercise groups compared with controls (P <.05). Pharmacologic introduction of irisin may improve metabolic factors such as insulin sensitivity and obesity by promoting weight loss and consequently improving the reproductive potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62(3):621–634.

    PubMed  Google Scholar 

  2. Bostrom P, Wu J, Jedrychowski MP, et al. A PGCl-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–468.

    PubMed  PubMed Central  Google Scholar 

  3. Kelly DP. Medicine. Irisin, light my fire. Science. 2012;336(6077):42–43.

    PubMed  Google Scholar 

  4. Hassan MA, Killick SR. Negative lifestyle is associated with a significant reduction in fecundity. Fertil Steril. 2004;81(2):384–392.

    PubMed  Google Scholar 

  5. Rogers J, Mitchell GW Jr. The relation of obesity to menstrual disturbances. N Engl J med. 1952;247(2):53–55.

    CAS  PubMed  Google Scholar 

  6. Hartz AJ, Barboriak PN, Wong A, Katayama KP, Rimm AA. The association of obesity with infertility and related menstural abnormalities in women. Int J Obes. 1979;3(1):57–73.

    CAS  PubMed  Google Scholar 

  7. Norman RJ, Clark AM. Obesity and reproductive disorders: a review. Reprod Fertil Dev. 1998;10(1):55–63.

    CAS  PubMed  Google Scholar 

  8. Rich-Edwards JW, Goldman MB, Willett WC, et al. Adolescent body mass index and infertility caused by ovulatory disorder. Am J Obstet Gynecol. 1994;171(1):171–177.

    CAS  PubMed  Google Scholar 

  9. Linne Y. Effects of obesity on women’s reproduction and complications during pregnancy. Obes Rev. 2004;5(3):137–143.

    CAS  PubMed  Google Scholar 

  10. Chinsomboon J, Ruas J, Gupta RK, et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009;106(50):21401–21406.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009; Appendix 4Appendix 41.

    Google Scholar 

  12. Myers M, Britt KL, Wreford NG, Ebling FJ, Kerr JB. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569–580.

    CAS  PubMed  Google Scholar 

  13. Taskin EI, Akgun-Dar K, Kapucu A, et al. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochem Funct. 2009;27(8):542–546.

    CAS  PubMed  Google Scholar 

  14. Senturk LM, Seli E, Gutierrez LS, Mor G, Zeyneloglu HB, Arici A. Monocyte chemotactic protein-1 expression in human corpus luteum. Mol Hum Reprod. 1999;5(8):697–702.

    CAS  PubMed  Google Scholar 

  15. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

  16. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–465.

    CAS  PubMed  Google Scholar 

  17. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98(4):E769–E778.

    CAS  PubMed  Google Scholar 

  18. Pardo M, Crujeiras AB, Amil M, et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol. 2014;2014:857270.

    Google Scholar 

  19. Huh JY, Panagiotou G, Mougios V, et al. FNDC5 and irisin in humans: I. predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725–1738.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Staiger H, Bohm A, Scheler M, et al. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived ’browning’ factor irisin, determines insulin sensitivity. PloS One. 2013;8(4):e61903.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Laven JS, Mulders AG, Visser JA, Themmen AP. De Jong FH, Fauser BC. Anti-mullerian hormone serum concentrations in nor-moovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab. 2004;89(1):318–323.

    CAS  PubMed  Google Scholar 

  22. Freeman EW, Gracia CR, Sammel MD, Lin H, Lim LC. Strauss JF III. Association of anti-mullerian hormone levels with obesity in late reproductive-age women. Fertil Steril. 2007;87(1):101–106.

    CAS  PubMed  Google Scholar 

  23. Su HI, Sammel MD, Freeman EW, Lin H, DeBlasis T, Gracia CR. Body size affects measures of ovarian reserve in late reproductive age women. Menopause. 2008;15(5):857–861.

    PubMed  PubMed Central  Google Scholar 

  24. Moy V, Jindal S, Lieman H, Buyuk E. Obesity adversely affects serum anti-mullerian hormone (AMH) levels in Caucasian women. J Assist Reprod Genet. 2015;32(9):1305–1311.

    PubMed  PubMed Central  Google Scholar 

  25. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA. 2010;303(3):242–249.

    CAS  PubMed  Google Scholar 

  26. Robker RL, Wu LL, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88(2):142–148.

    CAS  PubMed  Google Scholar 

  27. Wittemer C, Ohl J, Bailly M, Bettahar-Lebugle K, Nisand I. Does body mass index of infertile women have an impact on IVF procedure and outcome? J Assist Reprod Genet. 2000;17(10):547–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol. 2006;108(1):61–69.

    PubMed  Google Scholar 

  29. Esinler I, Bozdag G, Yarali H. Impact of isolated obesity on ICSI outcome. Reprod Biomed Online. 2008;17(4):583–587.

    CAS  PubMed  Google Scholar 

  30. Xie F, Anderson CL, Timme KR, Kurz SG, Fernando SC, Wood JR. Obesity-dependent increases in oocyte mRNAs are associated with increases in proinflammatory signaling and gut microbial abundance of Lachnospiraceae in female mice. Endocrinology. 2016;157(4):1630–1643.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology. 2010;151(8):4039–4046.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu LL, Dunning KR, Yang X, et al. High-fat diet causes lipo-toxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438–5445.

    CAS  PubMed  Google Scholar 

  33. Caillon H, Freour T, Bach-Ngohou K, et al. Effects of female increased body mass index on in vitro fertilization cycles outcome. Obes Res Clin Pract. 2015;9(4):382–388.

    PubMed  Google Scholar 

  34. Minge CE, Bennett BD, Norman RJ, Robker RL. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology. 2008;149(5):2646–2656.

    CAS  PubMed  Google Scholar 

  35. Igosheva N, Abramov AY, Poston L, et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PloS One. 2010;5(4):e10074.

    PubMed  PubMed Central  Google Scholar 

  36. Bermejo-Alvarez P, Rosenfeld CS, Roberts RM. Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model. Hum Reprod. 2012;27(12):3513–3522.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bazzano MV, Torelli C, Pustovrh MC, Paz DA, Elia EM. Obesity induced by cafeteria diet disrupts fertility in the rat by affecting multiple ovarian targets. Reprod Biomed Online. 2015;31(5):655–667.

    CAS  PubMed  Google Scholar 

  38. Richards JS, Sharma SC, Falender AE, Lo YH. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen, and the gonadotropins. Mol Endocrinol. 2002;16(3):580–599.

    CAS  PubMed  Google Scholar 

  39. Cunningham MA, Zhu Q, Unterman TG, Hammond JM. Follicle-stimulating hormone promotes nuclear exclusion of the forkhead transcription factor FoxOla via phosphatidylinositol 3-kinase in porcine granulosa cells. Endocrinology. 2003;144(12):5585–5594.

    CAS  PubMed  Google Scholar 

  40. Shi F, LaPolt PS. Relationship between FoxOl protein levels and follicular development, atresia, and luteinization in the rat ovary. J Endocrinol. 2003;179(2):195–203.

    CAS  PubMed  Google Scholar 

  41. Kajihara T, Uchino S, Suzuki M, Itakura A, Brosens JJ, Ishihara O. Increased ovarian follicle atresia in obese Zucker rats is associated with enhanced expression of the forkhead transcription factor FOXO1. Med Mol Morphol. 2009;42(4):216–221.

    CAS  PubMed  Google Scholar 

  42. Liu Z, Castrillon DH, Zhou W, Richards JS. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol Endocrinol. 2013;27(2):238–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cunningham MA, Zhu Q, Hammond JM. FoxOla can alter cell cycle progression by regulating the nuclear localization of p27kip in granulosa cells. Mol Endocrinol. 2004;18(7):1756–1767.

    CAS  PubMed  Google Scholar 

  44. John GB, Shirley LJ, Gallardo TD, Castrillon DH. Specificity of the requirement for Foxo3 in primordial follicle activation. Reproduction. 2007;133(5):855–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brenkman AB, Burgering BM. Fox03a eggs on fertility and aging. Trends Mol Med. 2003;9(11):464–467.

    CAS  PubMed  Google Scholar 

  46. John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hosaka T, Biggs WH III, Tieu D, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A. 2004;101(9):2975–2980.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Geva E, Jaffe RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril. 2000;74(3):429–438.

    CAS  PubMed  Google Scholar 

  49. Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology. 1998;139(6):2944–2954.

    CAS  PubMed  Google Scholar 

  50. Ellman C, Corbett JA, Misko TP, McDaniel M, Beckerman KP. Nitric oxide mediates interleukin-1-induced cellular cytotoxicity in the rat ovary. A potential role for nitric oxide in the ovulatory process. J Clin Invest. 1993;92(6):3053–3056.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shukovski L, Tsafriri A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology. 1994;135(5):2287–2290.

    CAS  PubMed  Google Scholar 

  52. Sengoku K, Takuma N, Horikawa M, et al. Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol Reprod Dev. 2001;58(3):262–268.

    CAS  PubMed  Google Scholar 

  53. Chun SY, Eisenhauer KM, Kubo M, Hsueh AJ. Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology. 1995;136(7):3120–3127.

    CAS  PubMed  Google Scholar 

  54. Sugino N, Takiguchi S, Ono M, et al. Nitric oxide concentrations in the follicular fluid and apoptosis of granulosa cells in human follicles. Hum Reprod. 1996;11(11):2484–2487.

    CAS  PubMed  Google Scholar 

  55. Mitchell LM, Kennedy CR, Hartshorne GM. Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles. Hum Reprod. 2004;19(1):30–40.

    PubMed  Google Scholar 

  56. Basini G, Grasselli F. Nitric oxide in follicle development and oocyte competence. Reproduction. 2015;150(1):R1–R9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Bastu MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastu, E., Zeybek, U., Gurevin, E.G. et al. Effects of Irisin and Exercise on Metabolic Parameters and Reproductive Hormone Levels in High-Fat Diet-Induced Obese Female Mice. Reprod. Sci. 25, 281–291 (2018). https://doi.org/10.1177/1933719117711264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117711264

Keywords

Navigation