Skip to main content
Log in

Comparison of Genome-Wide and Gene-Specific DNA Methylation Profiling in First-Trimester Chorionic Villi From Pregnancies Conceived With Infertility Treatments

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Assisted reproductive technologies are associated with altered methylation in term placenta. However, it is unclear whether methylation patterns are the result of fertility treatments or intrauterine environment. Thus, we set out to determine whether there are differences in the first-trimester placenta that may be altered by the underlying fertility treatments. Genome-wide DNA methylation analyses from chorionic villus sampling (CVS) from matched singleton pregnancies conceived using in vitro fertilization (IVF), non-IVF fertility treatment (NIFT), or those conceived spontaneously were performed using Illumina Infinium HumanMethylation450 BeadChip from 15 matched CVS samples. Nanofluidic quantitative polymerase chain reaction (qPCR) of differently methylated genes was performed in a confirmatory cohort of 23 IVF conceptions and 24 NIFT conceptions.

Results

Global methylation was similar among the IVF, NIFT, and spontaneous conceptions. However, differential methylation from IVF and NIFT pregnancies was present at 34 CpG sites, which was significantly different. Of those, 14 corresponded to known genes, with methylation changes detected at multiple loci in 3 genes, anaphase-promoting complex subunit 2 (ANAPC2), C-X-C motif chemokine ligand 14 (CXCL14), and regulating synaptic membrane exocytosis 1 (RIMS1). Nanofluidic qPCR of differentially methylated genes identified pre T-cell antigen receptor alpha (PTCRA) to be significantly downregulated in IVF versus NIFT conceptions.

Conclusion

Although global methylation patterns are similar, there are differences in methylation of specific genes in IVF compared to NIFT conceptions, leading to altered gene expression. PTCRA was differentially methylated and downregulated in IVF conceptions, warranting further investigation. It remains to be determined whether these changes affect placentation and whether it is due to the more profound underlying infertility requiring IVF, yet these data provide unique insight into the first-trimester placental epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katari S, Turan N, Bibikova M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18(20):3769–3778.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital dis-orders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–1977.

    PubMed  Google Scholar 

  3. Sunderam S, Chang J, Flowers L, et al., Assisted reproductive technology surveillance—United States, 2006. MMWR Surveill Summ. 2009;58(5):1–25.

    PubMed  Google Scholar 

  4. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–730.

    PubMed  Google Scholar 

  5. Klemetti R, Gissler M, Sevón T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84(5):1300–1307.

    PubMed  Google Scholar 

  6. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–737.

    PubMed  Google Scholar 

  7. Strömberg B, Dahlquist G, Ericson A, Finnström O, Köster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–465.

    PubMed  Google Scholar 

  8. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vermeiden JP, Bernardus RE. Are imprinting disorders more pre-valent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil Steril. 2013;99(3):642–651.

    PubMed  Google Scholar 

  10. Feinberg AP. Genome-scale approaches to the epigenetics of common human disease. Virchows Arch. 2010;456(1):13–21.

    CAS  PubMed  Google Scholar 

  11. Feinberg AP, Irizarry RA, Fradin D, et al. Personalized epige-nomic signatures that are stable over time and covary with body mass index. Sci Transi Med. 2010;2(49):49ra67.

    Google Scholar 

  12. Monk M, Salpekar A. Expression of imprinted genes in human preimplantation development. Mol Cell Endocrinol. 2001; 183(suppl 1):S35–S40.

    CAS  PubMed  Google Scholar 

  13. Jirtle RL, Sander M, Barrett JC. Genomic imprinting and envi-ronmental disease susceptibility. Environ Health Perspect. 2000;108(3):271–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev. 2007;74(10):1255–1261.

    CAS  PubMed  Google Scholar 

  15. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526–1535.

    CAS  PubMed  Google Scholar 

  16. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preim-plantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64(3):918–926.

    CAS  PubMed  Google Scholar 

  17. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduc-tion. Fertil Steril. 2013;99(3):632–641.

    PubMed  Google Scholar 

  18. Al-Khtib M, Blachère T, Guérin JF, Lefèvre A. Methylation pro-file of the promoters of Nanog and Oct4 in ICSI human embryos. Hum Reprod. 2012;27(10):2948–2954.

    CAS  PubMed  Google Scholar 

  19. Khoueiry R, Ibala-Romdhane S, Al-Khtib M, et al. Abnormal methylation of KCNQIOTI and differential methylation of H19 imprinting control regions in human ICSI embryos. Zygote. 2013;21(2):129–138.

    CAS  PubMed  Google Scholar 

  20. Nelissen EC, Dumoulin JC, Daunay A, Evers JL, Tost J, van Montfoort AP. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum Reprod. 2013;28(4):1117–1126.

    CAS  PubMed  Google Scholar 

  21. Li L, Wang L, Le F, et al., Evaluation of DNA methylation status at differentially methylated regions in IVF-conceived newborn twins. Fertil Steril. 2011;95(6):1975–1979.

    CAS  PubMed  Google Scholar 

  22. Rancourt RC, Harris HR, Michels KB. Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod. 2012;27(7):2208–2216.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oliver VF, Miles HL, Cutfield WS, Hofman PL, Ludgate JL, Morison IM. Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil Steril. 2012;97(1):147–153.e7.

    CAS  PubMed  Google Scholar 

  24. Wong EC, Hatakeyama C, Robinson WP, Ma S. DNA methyla-tion at H19/IGF2 ICR1 in the placenta of pregnancies conceived by in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2011;95(8):2524–2526.el-e3.

    CAS  PubMed  Google Scholar 

  25. Melamed N, Choufani S, Wilkins-Haug LE, Koren G, Weksberg R. Comparison of genome-wide and gene-specific DNA methyla-tion between ART and naturally conceived pregnancies. Epige-netics. 2015;10(6):474–483.

    Google Scholar 

  26. Buckberry S, Bianco-Miotto T, Hiendleder S, Roberts CT. Quan-titative allele-specific expression and DNA methylation analysis of HI 9, IGF2 and IGF2R in the human placenta across gestation reveals H19 imprinting plasticity. PLoS One. 2012;7(12):e51210.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Herzog E, Galvez J, Roks A. Tissue-specific DNA methylation profiles in newborns. Clin Epigenetics. 2013;5(1):8.

    Google Scholar 

  28. Bird LM. Angelman syndrome: review of clinical and molecular aspects. Appl Clin Genet. 2014;7:93–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Niu Y, Wang Z, Huang H, et al. Activated pregnane X receptor inhibits cervical cancer cell proliferation and tumorigenicity by inducing G2/M cell-cycle arrest. Cancer Lett. 2014;347(1):88–97.

    CAS  PubMed  Google Scholar 

  30. Kuang H, Chen Q, Zhang Y. The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity. Endocrinology. 2009;150(12):5596–5605.

    CAS  PubMed  Google Scholar 

  31. Cheong CY, Chng K, Lim MK, et al. Alterations to DNA methy-lation and expression of CXCL14 are associated with suboptimal birth outcomes. J Hum Genet. 2014;59(9):504–511.

    CAS  PubMed  Google Scholar 

  32. Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013;14(4):288–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavrov AV, Chelysheva EY, Smirnikhina SA, et al. Frequent variations in cancer-related genes may play prognostic role in treatment of patients with chronic myeloid leukemia. BMC Genet. 2016;17(suppl 1):14.

    PubMed  PubMed Central  Google Scholar 

  35. Rodriguez RM, Suarez-Alvarez B, Mosén-Ansorena D, et al. Regulation of the transcriptional program by DNA methylation during human alphabeta T-cell development. Nucleic Acids Res. 2015;43(2):760–774.

    CAS  PubMed  Google Scholar 

  36. Brandeis MI, Frank D, Keshet I, et al. Spl elements protect a CpG island from de novo methylation. Nature. 1994;371(6496):435–438.

    CAS  PubMed  Google Scholar 

  37. Macleod D, Charlton J, Mullins J, Bird AP. Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994;8(19):2282–2292.

    CAS  PubMed  Google Scholar 

  38. Smale ST. Pioneer factors in embryonic stem cells and differen-tiation. Curr Opin Genet Dev. 2010;20(5):519–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brameld KJ, Dickinson JE, O’Leary P, et al. First trimester pre-dictors of adverse pregnancy outcomes. Aust N Z J Obstet Gynaecol. 2008;48(6):529–535.

    PubMed  Google Scholar 

  40. Jelliffe-Pawlowski LL, Shaw GM, Currier RJ, et al. Association of early-preterm birth with abnormal levels of routinely collected first- and second-trimester biomarkers. Am J Obstet Gynecol. 2013;208(6):492.e1–e11.

    CAS  Google Scholar 

  41. Hu XL, Feng C, Lin XH, et al. High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab. 2014;99(6):2217–2224.

    CAS  PubMed  Google Scholar 

  42. Smith GC, Smith MF, McNay MB, Fleming JE. First-trimester growth and the risk of low birth weight. N Engl J Med. 1998;339(25):1817–1822.

    CAS  PubMed  Google Scholar 

  43. Chu T, Handley D, Bunce K, Surti U, Hogge WA, Peters DG. Structural and regulatory characterization of the placental epigenome at its maternal interface. PLoS One. 2011;6(2):e14723.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 2011;6(7):920–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Anton L, Brown AG, Bartolomei MS, Elovitz MA. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS One. 2014;9(6):e100148.

    PubMed  PubMed Central  Google Scholar 

  46. Song S, Ghosh J, Mainigi M, et al. DNA methylation differences between in vitro- and in vivo-conceived children are associated with ART procedures rather than infertility. Clin Epigenetics. 2015;7(1):41.

    PubMed  PubMed Central  Google Scholar 

  47. El Hajj N, Schneider E, Lehnen H, Haaf T. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrau-terine environment. Reproduction. 2014;148(6):R111–R120.

    PubMed  PubMed Central  Google Scholar 

  48. Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA, Conrad KP. Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta. 2009;30(1):15–24.

    CAS  PubMed  Google Scholar 

  49. Conway DA, Liem J, Patel S, Fan KJ, Williams J III, Pisarska MD. The effect of infertility and assisted reproduction on first-trimester placental and fetal development. Fertil Steril. 2011;95(5):1801–1804.

    PubMed  Google Scholar 

  50. Jackson S, Hong C, Wang ET, Alexander C, Gregory KD, Pisarska MD. Pregnancy outcomes in very advanced maternal age pregnancies: the impact of assisted reproductive technology. Fertil Steril. 2015;103(1):76–80.

    PubMed  Google Scholar 

  51. Chandra A, Copen CE, Stephen EH. Infertility service use in the United States: data from the National Survey of Family Growth, 1982–2010. Natl Health Stat Report. 2014;(73):1–21.

    Google Scholar 

  52. Huang A, Adusumalli J, Patel S, Liem J, Williams J III, Pisarska MD. Prevalence of chromosomal mosaicism in pregnancies from couples with infertility. Fertil Steril. 2009;91(6):2355–2360.

    PubMed  Google Scholar 

  53. Conway DA, Patel SS, Liem J, et al. The risk of cytogenetic abnormalities in the late first trimester of pregnancies conceived through assisted reproduction. Fertil Steril. 2011;95(2):503–506.

    PubMed  Google Scholar 

  54. Clifton VL. Review: Sex and the human placenta: mediating dif-ferential strategies of fetal growth and survival. Placenta. 2010; 31(suppl):S33–S39.

    PubMed  Google Scholar 

  55. Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30(3):428–430.

    CAS  Google Scholar 

  56. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol). 1995;57(1):289–300.

    Google Scholar 

  57. Kalisky T, Quake SR. Single-cell genomics. Nat Methods. 2011;8(4):311–314.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta D. Pisarska MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Barlow, G.M., Cui, J. et al. Comparison of Genome-Wide and Gene-Specific DNA Methylation Profiling in First-Trimester Chorionic Villi From Pregnancies Conceived With Infertility Treatments. Reprod. Sci. 24, 996–1004 (2017). https://doi.org/10.1177/1933719116675056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116675056

Keywords

Navigation