Skip to main content

Advertisement

Log in

Effects of Pazopanib, Sunitinib, and Sorafenib, Anti-VEGF Agents, on the Growth of Experimental Endometriosis in Rats

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We aimed to compare the effects of pazopanib, sunitinib, and sorafenib on endometriotic tissue morphology and histological characteristics as well as ovarian reserve in a rat model. Experimental endometriosis was established in 32 rats. They were randomly divided into 4 groups (8 rats for each group) to administer study drugs: pazopanib, sunitinib, sorafenib, and normal saline. Histological examination with hematoxylin and eosin staining to determine endometriosis score and immunostaining with primary vascular endothelial growth factor (VEGF), CD117, and Bax antibodies were performed. Bilateral ovaries excised to determine the ovarian follicle number. The endometriosis score was significantly reduced by pazopanib compared to other study drugs and by sunitinib compared to sorafenib and normal saline (P < .05). Sorafenib did not affect endometriosis score (P > .05). The VEGF score was significantly decreased similarly by pazopanib, sunitinib, and sorafenib compared to normal saline (P < .05). The CD117 score was reduced by pazopanib and sunitinib similarly compared to both sorafenib and normal saline that provided similar effect on the score (P < .05). The Bax scores of all the groups were found similar (P > .05). No study drugs caused meaningful change in the ovarian follicle number (P > .05). Pazopanib reduces the growth of endometriotic implants. This effect may be related to the suppressive effect of pazopanib on the endometriotic tissue expressions of VEGF and CD117 but not Bax. The study drugs do not affect ovarian reserve. The inconsistent effects of study drugs regarding study parameters require further studies to elucidate the molecular bases of their effects on the growth of endometriotic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schenken RS. Pathogenesis, Clinical Features, and Diagnosis of Endometriosis. Waltham, MA: UpToDate; 2014.

    Google Scholar 

  2. Aznaurova YB, Zhumataev MB, Roberts TK, Aliper AM, Zhavoronkov AA. Molecular aspects of development and regulation of endometriosis. Reprod Biol Endocrinol. 2014;12:50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsuzaki S, Darcha C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013;8(10):e76808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen J, Naoura I, Castela M, et al. Pregnancy affects morphology of induced endometriotic lesions in a mouse model through alteration of proliferation and angiogenesis. Eur J Obstet Gynecol Reprod Biol. 2014;183:70–77.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci. 2002;955:89–100.

    Article  CAS  PubMed  Google Scholar 

  7. Uzan C, Cortez A, Dufournet C, et al. Endometrium from women with and without endometriosis, and peritoneal, ovarian and bowel endometriosis, show different c-kit protein expression. J Reprod Immunol. 2005;65(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  8. Pacchiarotti A, Caserta D, Sbracia M, et al. Expression of oct-4 and c-kit antigens in endometriosis. Fertil Steril. 2011;95(3): 1171–1173.

    Article  CAS  PubMed  Google Scholar 

  9. Gonçalves GA, Camargo-Kosugi CM, Bonetti TC, et al. p27kip1 overexpression regulates VEGF expression, cell proliferation and apoptosis in cell culture from eutopic endometrium of women with endometriosis. Apoptosis. 2015;20(3):327–335.

    Article  PubMed  Google Scholar 

  10. Abdalla Ribeiro HS, Galvāo MA, Aoki T, Aldrighi JM, Ribeiro PA. Anti-apoptotic activity in deep pelvic endometriosis. Histol Histopathol. 2014;29(9):1129–1133.

    PubMed  Google Scholar 

  11. Becker CM, D’Amato RJ. Angiogenesis and antiangiogenic therapy in endometriosis. Microvasc Res. 2007;74(2–3):121–130.

    Article  CAS  PubMed  Google Scholar 

  12. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  13. Xu H, Zhang T, Man GC, et al. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis. 2013;16(3):541–551.

    Article  CAS  PubMed  Google Scholar 

  14. Sloan B, Scheinfeld NS. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs. 2008;9(12):1324–1335.

    CAS  PubMed  Google Scholar 

  15. Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007;356(2):323–328.

    Article  CAS  PubMed  Google Scholar 

  16. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–3140.

    Article  CAS  PubMed  Google Scholar 

  17. Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5(3):203–220.

    Article  CAS  PubMed  Google Scholar 

  18. Moggio A, Pittatore G, Cassoni P, Marchino GL, Revelli A, Bussolati B. Sorafenib inhibits growth, migration, and angiogenic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil Steril. 2012;98(6):1521–1530.

    Article  CAS  PubMed  Google Scholar 

  19. Ozer H, Boztosun A, Ac¸maz G, Atilgan R, Akkar OB, Kosar MI. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model. Reprod Sci. 2013;20(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  20. Abbas MA, Disi AM, Taha MO. Sunitinib as an anti-endometriotic agent. Eur J Pharm Sci. 2013;49(4):732–736.

    Article  CAS  PubMed  Google Scholar 

  21. Machado DE, Berardo PT, Palmero CY, Nasciutti LE. Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. J Exp Clin Cancer Res. 2010;29:4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Edwards AK, Nakamura DS, Virani S, Wessels JM, Tayade C. Animal models for anti-angiogenic therapy in endometriosis. J Reprod Immunol. 2013;97(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  23. Vernon MW, Wilson EA. Studies on the surgical induction of endometriosis in the rat. Fertil Steril. 1985;44(5):684–694.

    Article  CAS  PubMed  Google Scholar 

  24. Keenan JA, Williams-Boyce PK, Massey PJ, Chen TT, Caudle MR, Bukovsky A. Regression of endometrial explants in a rat model of endometriosis treated with the immune modulators loxoribine and levamisole. Fertil Steril. 1999;72(1):135–141.

    Article  CAS  PubMed  Google Scholar 

  25. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13(6):1686–1690.

    Article  CAS  PubMed  Google Scholar 

  26. Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;8(3):138–140.

    CAS  PubMed  Google Scholar 

  27. Takehara M, Ueda M, Yamashita Y, Terai Y, Hung YC, Ueki M. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol. 2004;35(11):1369–1375.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15–35.

    CAS  PubMed  Google Scholar 

  30. Groothuis PG, Nap AW, Winterhager E, Grümmer R. Vascular development in endometriosis. Angiogenesis. 2005;8(2): 147–156.

    Article  CAS  PubMed  Google Scholar 

  31. Song WW, Lu H, Hou WJ, et al. Expression of vascular endothelial growth factor C and anti-angiogenesis therapy in endometriosis. Int J Clin Exp Pathol. 2014;7(11):7752–7759.

    PubMed  PubMed Central  Google Scholar 

  32. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–519.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor RN, Yu J, Torres PB, et al. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16(2):140–146.

    Article  CAS  PubMed  Google Scholar 

  34. Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 2013;9(5):435–443.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nasu K, Nishida M, Kawano Y, et al. Aberrant expression of apoptosis-related molecules in endometriosis: a possible mechanism underlying the pathogenesis of endometriosis. Reprod Sci. 2011;18(3):206–218.

    Article  CAS  PubMed  Google Scholar 

  36. Shablak A, Gilham DE, Hawkins RE, Elkord E. In vitro effect of IL-2 in combination with pazopanib or sunitinib on lymphocytes function and apoptosis of RCC cells. Expert Opin Pharmacother. 2014;15(11):1489–1499.

    Article  CAS  PubMed  Google Scholar 

  37. Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43–9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Che-mother Pharmacol. 2007;59(5):561–574.

    Article  CAS  Google Scholar 

  38. Zhu XD, Zhang JB, Fan PL, et al. Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography. BMC Cancer. 2011;11:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishijima N, Kanki K, Shimizu H, Shiota G. AMPK activation by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib[published online February 12, 2015]. Cancer Sci. 2015. doi:10.1111/cas.12633.

  40. Chinchar E, Makey KL, Gibson J, et al. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells. Vasc Cell. 2014;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Di Desidero T, Fioravanti A, Orlandi P, et al. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1. J Clin Endocrinol Metab. 2013;98(9):1465–1473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caglar Yildiz MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, C., Kacan, T., Akkar, O.B. et al. Effects of Pazopanib, Sunitinib, and Sorafenib, Anti-VEGF Agents, on the Growth of Experimental Endometriosis in Rats. Reprod. Sci. 22, 1445–1451 (2015). https://doi.org/10.1177/1933719115584448

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115584448

Keywords

Navigation