Skip to main content

Advertisement

Log in

Leiomyoma Cells in 3-Dimensional Cultures Demonstrate an Attenuated Response to Fasudil, a Rho-Kinase Inhibitor, When Compared to 2-Dimensional Cultures

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyomata are common benign tumors in women of reproductive age and demonstrate an attenuated response to mechanical signaling that involves Rho and integrins. To further characterize the impairment in Rho signaling, we studied the effect of Rho-kinase inhibitor, fasudil, on extracellular matrix production, in 2-dimensional (2D) and 3-dimensional (3D) cultures of leiomyoma and myometrial cells. Leiomyoma 2D cultures demonstrated a rapid decrease in gene transcripts and protein for fibronectin, procollagen 1A, and versican. In 3D cultures, fibronectin and procollagen 1A proteins demonstrated increased levels at lower concentrations of fasudil, followed by a concentration-dependent decrease. Versican protein increased up to 3-fold, whereas fibromodulin demonstrated a significant decrease of 1.92-fold. Myometrial 2D or 3D cultures demonstrated a decrease in all proteins after 72 hours of treatment. The 3D leiomyoma cultures demonstrated a significant increase in active RhoA, followed by a concentration-dependent decrease at higher concentrations. A concentration-dependent increase in phospho-extracellular regulated signal kinase and proapoptotic protein Bax was observed in 3D leiomyoma cultures. Fasudil relaxed the contraction of the 3D collagen gels caused by myometrium and leiomyoma cell growth. These findings indicate that the altered state of Rho signaling in leiomyoma was more clearly observed in 3D cultures. The results also suggest that fasudil may have clinical applicability for treatment of uterine leiomyoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003; 188(1):100–107.

    Article  PubMed  Google Scholar 

  2. Baird DD. Invited commentary: uterine leiomyomata-we know so little but could learn so much. Am J Epidemiol. 2004;159(2): 113–123.

    Article  Google Scholar 

  3. Levy G, Hill MJ, Beall S, Zarek SM, Segars JH, Catherino WH. Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances. J Assist Reprod Genet. 2012;29(8):703–712.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14): 1344–1355.

    Article  CAS  PubMed  Google Scholar 

  5. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206(3):211. e1–211.e9.

    Article  Google Scholar 

  6. Eltoukhi HM, Modi MN, Weston M, Armstrong AY, Stewart EA. The health disparities of uterine fibroid tumors for African American women: a public health issue. Am J Obstet Gynecol. 2014; 210(3):194–199.

    Article  PubMed  Google Scholar 

  7. Myers ER, Barber MD, Gustilo-Ashby T, Couchman G, Matchar DB, McCrory DC. Management of uterine leiomyomata: what do we really know? Obstet Gynecol. 2002;100(1):8–17.

    PubMed  Google Scholar 

  8. Payson M, Leppert P, Segars J. Epidemiology of myomas. Obstet Gynecol Clin North Am. 2006;33(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malik M, Norian J, McCarthy-Keith D, Britten J, Catherino WH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010; 28(3):169–179.

    Article  PubMed  Google Scholar 

  10. Islam MS, Protic O, Stortoni P, et al. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril. 2013;100(1):178–193.

    Article  CAS  PubMed  Google Scholar 

  11. Rogers R, Norian J, Malik M, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008; 198(4):e1–e11.

    Article  Google Scholar 

  12. Norian JM, Owen CM, Taboas J, et al. Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol. 2012;3(1):57–65.

    Article  CAS  Google Scholar 

  13. Kiss MZ, Hobson MA, Varghese T, et al. Frequency-dependent complex modulus of the uterus: preliminary results. Phys Med Biol. 2006;51(15):3683–3695.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stewart EA, Taran FA, Chen J, et al. Magnetic resonance elasto-graphy of uterine leiomyomas: a feasibility study. Fertil Steril. 2011;95(1):281–284.

    Article  PubMed  Google Scholar 

  15. Luo T, Robinson DN. The role of the actin cytoskeleton in mechanosensation. In: Kamkin A, Kiseleva I, eds. Mechanosensitivity and Mechanotransduction, Mechanosensitivity in Cells and Tissues 4, Springer Sciences. 2011.

    Google Scholar 

  16. Payson M, Malik M, Siti-Nur Morris S, Segars JH, Chason R, Catherino WH. Activating transcription factor 3 gene expression suggests that tissue stress plays a role in leiomyoma development. Fertil Steril. 2008;92(2):748–755.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Malik M, Segars J, Catherino WH. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth. Matrix Biol. 2012; 31(7–8):389–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peavey M, Salleh N, Leppert P. Collagen-binding α11 integrin expression in human myometrium and fibroids utilizing a novel RNA in situ probe [published online February 11, 2014]. Reprod Sci. 2014.

  19. Van Aelst L, D’souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11(18):2295–2322.

    Article  PubMed  Google Scholar 

  20. Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci. 2011;124(pt 8): 1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999;81(5):682–687.

    Article  CAS  PubMed  Google Scholar 

  22. Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat. 2004;84(1):43–48.

    Article  CAS  PubMed  Google Scholar 

  23. Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28(1–2):65–76.

    Article  CAS  PubMed  Google Scholar 

  24. Amano M, Nakayama M, Kaibuchi K.Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken). 2010;67(9):545–554.

    Article  CAS  Google Scholar 

  25. Moriyama T, Nagatoya K. The Rho-ROCK system as a new therapeutic target for preventing interstitial fibrosis. Drug News Perspect. 2004;17(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  26. Komers R. Rho kinase inhibition in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  27. Komers R. Rho kinase inhibition in diabetic kidney disease. Br J Clin Pharmacol. 2013;76(4):551–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Washida N, Wakino S, Tonozuka Y, et al. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant. 2011;26(9): 2770–2779.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou H, Zhang KX, Li YJ, Guo BY, Wang M, Wang M. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses high glucose-induced proliferation and collagen synthesis in rat cardiac fibroblasts. Clin Exp Pharmacol Physiol. 2011;38(6): 387–394.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci. 2012;13(7):8293–8307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasaki Y, Suzuki M, Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacol Ther. 2002;93(2–3):225–232.

    Article  CAS  PubMed  Google Scholar 

  32. Hirooka Y, Shimokawa H. Therapeutic potential of Rho-kinase inhibitors in cardiovascular diseases. Am J Cardiovasc Drugs. 2005;5(1):31–39.

    Article  CAS  PubMed  Google Scholar 

  33. Fukushima M, Nakamuta M, Kohjima M, et al. Fasudil hydro-chloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int. 2005;25(4):829–838.

    Article  CAS  PubMed  Google Scholar 

  34. Malik M, Catherino WH. Development and validation of a three-dimensional in vitro model for uterine leiomyoma and patient-matched myometrium. Fertil Steril. 2012;97(6): 1287–1293.

    Article  PubMed  Google Scholar 

  35. Malik M, Deng J, Britten JL, Levy G, Segars J, Catherino WH. Estrogen and progesterone stimulate extracellular matrix production in myometrium and leiomyoma 3-dimensional cultures. Fertil Steril. 2013;100(3):S401.

    Google Scholar 

  36. Levy G, Malik M, Britten JL, Gilden M, Segars JH, Catherino WH. Liarozole inhibits transforming growth factor-Beta 3 (TGF-β3) Mediated Extracellular Matrix (ECM) formation in human 3-dimensional leiomyoma cultures. Fertil Steril. 2014; 102(1):272–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Britten JL, Malik M, Levy G, Catherino WH. Early extracellular matrix protein reduction in 3-dimensional cultures treated with cetrorelix acetate compared to 2-dimensional culture systems: evidence of therapeutic efficacy. Fertil Steril. 2013; 100(3):S319.

    Article  Google Scholar 

  38. Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol. 2008; 69(3):462–470.

    Article  CAS  Google Scholar 

  39. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katoh K, Kano Y, Noda Y. Rho-associated kinase-dependent contraction of stress fibers and the organization of focal adhesions. J R Soc Interface. 2011;8(56):305–311.

    Article  CAS  PubMed  Google Scholar 

  41. Mason BN, Califano JP, Reinhart-King CA. Matrix stiffness: a regulator of cellular behavior and tissue formation. In: Bhatia SK, ed. Engineering Biomaterials for Regenerative Medicine: Novel Technologies for Clinical Applications. Springer Science Business Media, LLC; 2012.

  42. Callister WD. Fundamentals of Materials Science and Engineering: An Interactive E-Text. John Wiley & Sons, Somerset, NJ, ed. 5th Edition, 2000.

  43. Discher D, Dong C, Fredberg JJ, et al. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng. 2009;37(5):847–859.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gilbert PM, Havenstrite KL, Magnusson KEG, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Levental I, Georges P, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306.

    Article  CAS  PubMed  Google Scholar 

  46. Guan R, Xu X, Chen M, et al. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem. 2013;70:613–622.

    Article  CAS  PubMed  Google Scholar 

  47. Shiotani S, Shimada M, Suehiro T, et al. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats. Transplantation. 2004;78(3):375–382.

    Article  CAS  PubMed  Google Scholar 

  48. Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res. 2004; 61(3):548–558.

    Article  CAS  PubMed  Google Scholar 

  49. Dong M, Yan BP, Liao JK, Lam YY, Yip GW, Yu CM. Rhokinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases. Drug Discov Today. 2010;15(15–16): 622–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bourgier C, Haydont V, Milliat F, et al. Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut. 2005;54(3): 336–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Satoh S, Utsunomiya T, Tsurui K, et al. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci. 2001;69(12):1441–1453.

    Article  CAS  PubMed  Google Scholar 

  52. Takata M, Tanaka H, Kimura M, et al. Fasudil, a rho kinase inhibitor, limits motor neuron loss in experimental models of amyotrophic lateral sclerosis. Br J Pharmacol. 2013;170(2): 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chapados R, Abe K, Ihida-Stansbury K, et al. ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vaso-constriction to vascular remodeling. Circ Res. 2006;99(8): 837–844.

    Article  CAS  PubMed  Google Scholar 

  54. McMurtry IF, Abe K, Ota H, Fagan KA, Oka M. Rho kinase-mediated vasoconstriction in pulmonary hypertension. Adv Exp Med Biol. 2010;661:299–308.

    Article  CAS  PubMed  Google Scholar 

  55. He Y, Xu H, Liang L, et al. Antiinflammatory effect of Rho kinase blockade via inhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum. 2008;58(11):3366–3376.

    Article  CAS  PubMed  Google Scholar 

  56. Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg. 1992;76(4):571–577.

    Article  CAS  PubMed  Google Scholar 

  57. Shibuya M, Asano T, Sasaki Y. Effect of Fasudil HCl, a protein kinase inhibitor, on cerebral vasospasm. Acta Neurochir Suppl. 2001;77:201–204.

    Article  CAS  PubMed  Google Scholar 

  58. Raja SG. Evaluation of clinical efficacy of fasudil for the treatment of pulmonary arterial hypertension. Recent Pat Cardiovasc Drug Discov. 2012;7(2):100–104.

    Article  CAS  PubMed  Google Scholar 

  59. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–635.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011; 475(7356):316–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004; 82(suppl 3):1182–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308(5728):1589–1592.

    Article  CAS  PubMed  Google Scholar 

  63. Malik M, Catherino WH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril. 2007; 87(5):1166–1172.

    Article  CAS  PubMed  Google Scholar 

  64. Norian JM, Malik M, Parker CY, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16(12): 1153–1164.

    Article  CAS  PubMed  Google Scholar 

  65. Ying Z, Yue P, Xu X, et al. Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. Am J Physiol Heart Circ Physiol. 2009;296(5):H1540–H1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma DW, Wang QY, Ma XY, Li J, Guan QH, Fu Y. The effect of fasudil via Rho/ROCK signaling pathway on the inflammation and fibrosis in human mesangial cells in high glucose medium. Zhonghua Nei Ke Za Zhi. 2011;50(7):580–584.

    CAS  PubMed  Google Scholar 

  67. Taylor DK, Leppert PC. Treatment for uterine fibroids: searching for effective drug therapies. Drug Discov Today Ther Strateg. 2012;9(1):e41–e49.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Itoh M, Chiba H, Noutomi T, Takada E, Mizuguchi J. Cleavage of Bax-alpha and Bcl-x(L) during carboplatin-mediated apoptosis in squamous cell carcinoma cell line. Oral Oncol. 2000; 36(3):277–285.

    Article  CAS  PubMed  Google Scholar 

  69. Wood DE, Newcomb EW. Cleavage of Bax enhances its cell death function. Exp Cell Res. 2000;256(2):375–382.

    Article  CAS  PubMed  Google Scholar 

  70. Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T, Mizuguchi J. Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett. 2003;189(2):221–230.

    Article  CAS  PubMed  Google Scholar 

  71. Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92(10–11): 303–315.

    Article  CAS  PubMed  Google Scholar 

  72. Owen CM, Norian JM, Guo XC, Malik M, Catherino WH, Segars JH. Leiomyoma cells show attenuated mechanosensing, but increased dependence on Rho-GEF activation compared to myometrial cells. Fertil Steril. 2010;94(4):S76.

    Article  Google Scholar 

  73. Fitzgibbon J, Morrison JJ, Smith TJ, O’Brien M. Modulation of human uterine smooth muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin. Reprod Biol Endocrinol. 2009;7:2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Catherino MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M., Britten, J., Segars, J. et al. Leiomyoma Cells in 3-Dimensional Cultures Demonstrate an Attenuated Response to Fasudil, a Rho-Kinase Inhibitor, When Compared to 2-Dimensional Cultures. Reprod. Sci. 21, 1126–1138 (2014). https://doi.org/10.1177/1933719114545240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114545240

Keywords

Navigation