Skip to main content

Advertisement

Log in

Raised Maternal Serum Cystatin C: An Early Pregnancy Marker for Preeclampsia

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The balance between trophoblast cathepsin and decidual cystatin C expression is pivotal in physiological trophoblast development. Defective trophoblast invasion is characteristic of preeclampsia and may involve derangement of the cathepsin/cystatin C balance. We conducted a prospective nested case-control study of healthy women with singleton pregnancies in the first trimester of pregnancy. Maternal serum cystatin C concentrations in those subsequently developing preeclampsia (n = 30) were compared to controls with normal outcome (n = 90). The median cystatin C concentration in early pregnancy was significantly higher (P = .0001) in those who subsequently developed preeclampsia (median 0.65 mg/L) when compared to normal pregnancy (median 0.57 mg/L). Of the 30 women developing preeclampsia, 14 (47%) had cystatin C above the 80th centile (0.67 mg/L) for the controls. Maternal serum cystatin C concentrations in early pregnancy may be of value in identifying women at high risk of developing preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93(10):1049–1059.

    Article  CAS  Google Scholar 

  2. Pijnenborg R, Anthony J, Davey DA, et al. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol. 1991;98(7):648–655.

    Article  CAS  Google Scholar 

  3. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994;101(8):669–674.

    Article  CAS  Google Scholar 

  4. Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junc-tional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002;187(5):1416–1423.

    Article  Google Scholar 

  5. Pijnenborg R, Bland JM, Robertson WB, Dixon G, Brosens I. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta. 1981;2(4):303–316.

    Article  CAS  Google Scholar 

  6. Redman CW, Sargent IL. Latest advances in understanding pre-eclampsia. Science. 2005;308(5728):1592–1594.

    Article  CAS  Google Scholar 

  7. Varanou A, Withington SL, Lakasing L, Williamson C, Burton GJ, Hemberger M. The importance of cysteine cathe-psin proteases for placental development. J Mol Med. 2006;84(4):305–317.

    Article  CAS  Google Scholar 

  8. Afonso S, Romagnano L, Babiarz B. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Development. 1997;124(17):3415–3425.

    CAS  PubMed  Google Scholar 

  9. Kristensen K, Wide-Swensson D, Schmidt C, et al. Cystatin C, beta-2-microglobulin and beta-trace protein in pre-eclampsia. Acta Obstet Gynecol Scand. 2007;86(8):921–926.

    Article  CAS  Google Scholar 

  10. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV.

    Article  CAS  Google Scholar 

  11. Salamonsen LA. Role of proteases in implantation. Rev Reprod. 1999;4(1):11–22.

    Article  CAS  Google Scholar 

  12. Mason RW, Stabley DL, Picerno GN, et al. Evolution of placental proteases. Biol Chem. 2002;383(7–8):1113–1118.

    CAS  PubMed  Google Scholar 

  13. Ishida M, Ono K, Taguchi S, et al. Cathepsin gene expression in mouse placenta during the latter half of pregnancy. J Reprod Dev. 2004;50(5):515–523.

    Article  CAS  Google Scholar 

  14. Divya CP, Mahajan VS, Datta Gupta S, Chauhan SS. Differential activity of cathepsin L in human placenta at two different stages of gestation. Placenta. 2002;23(1):59–64.

    Article  CAS  Google Scholar 

  15. Nakanishi T, Ozaki Y, Blomgren K, Tateyama H, Sugiura-Ogasawara M, Suzumori K. Role of cathepsins and cystatins in patients with recurrent miscarriage. Mol Hum Reprod. 2005;11(5):351–355.

    Article  CAS  Google Scholar 

  16. Huppertz B, Kertschanska S, Demir AY, Frank HG, Kaufmann P. Immunohistochemistry of matrix metalloprotei-nases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res. 1998;291(1):133–148.

    Article  CAS  Google Scholar 

  17. Graham CH, Lala PK. Mechanisms of placental invasion of the uterus and their control. Biochem Cell Biol. 1992;70(10–11):867–874.

    Article  CAS  Google Scholar 

  18. Khan S, Katabuchi H, Araki M, Nishimura R, Okamura H. Human villous macrophage-conditioned media enhance human trophoblast growth and differentiation in vitro. Biol Reprod. 2000;62(4):1075–1083.

    Article  CAS  Google Scholar 

  19. Demir R, Kayisli UA, Seval Y, et al. Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: differences between placental vasculogenesis and angiogenesis. Placenta. 2004;25(6):560–572.

    Article  CAS  Google Scholar 

  20. Myatt L, Eis AL, Brockman DE, Kossenjans W, Greer I, Lyall F. Inducible (type II) nitric oxide synthase in human placental villous tissue of normotensive, preeclamptic and intrauterine growth-restricted pregnancies. Placenta. 1997;18(4):261–268.

    Article  CAS  Google Scholar 

  21. Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B. regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell. 2005;16(8):3488–3500.

    Article  CAS  Google Scholar 

  22. Vettraino IM, Roby J, Tolley T, Parks WC. Collagenase-I, stromelysin-I, and matrilysin are expressed within the placenta during multiple stages of human pregnancy. Placenta. 1996;17(8):557–563.

    Article  CAS  Google Scholar 

  23. Gallery ED, Campbell S, Arkell J, Nguyen M, Jackson CJ. Pre-eclamptic decidual microvascular endothelial cells express lower levels of matrix metalloproteinase–1 than normals. Microvasc Res. 1999;57(3):340–346.

    Article  CAS  Google Scholar 

  24. Pang ZJ, Xing FQ. Expression profile of trophoblast invasion-associated genes in the pre-eclamptic placenta. Br J Biomed Sci. 2003;60(2):97–101.

    Article  CAS  Google Scholar 

  25. Merchant SJ, Davidge ST. The role of matrix metalloprotei-nases in vascular function: implications for normal pregnancy and preeclampsia. Br J Obstet Gynecol. 2004;111(9):931–939.

    Article  CAS  Google Scholar 

  26. al-Hameri M, Roszkowska-Jakimiec W, Gacko M, Chlabicz M. Activity of cathepsin B and cystatins in the placenta during EPH-gestosis. Ginekol Pol. 2001;72(2):61–66.

    CAS  PubMed  Google Scholar 

  27. Myers JE, Merchant SJ, Macleod M, Mires GJ, Baker PN, Davidge ST. MMP–2 levels are elevated in the plasma of women who subsequently develop pre—eclampsia. Hypertens Preg. 2005;24(2):103–115.

    Article  CAS  Google Scholar 

  28. Zhou Y, Damsky CH, Fisher SJ. Pre-eclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99(9):2152–2164.

    Article  CAS  Google Scholar 

  29. Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B. The frequency and severity of placental findings in women with pre-eclampsia are gestational age dependent. Am J Obstet Gynecol. 2003;189(4):1173–1177.

    Article  Google Scholar 

  30. Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Mor-phometric placental villous and vascular abnormalities in early and late-onset preeclampsia with and without fetal growth restriction. BJOG. 2006;113(5):580–589.

    Article  CAS  Google Scholar 

  31. Kristensen K, Larsson L, Hansson SR. Increased cystatin C expression in the pre-eclamptic placenta. Mol Human Repro. 2007;13(3):189–195.

    Article  CAS  Google Scholar 

  32. Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M. Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol. 1999;16(6):287–295.

    Article  CAS  Google Scholar 

  33. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child. 2000;82(1):71–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thilaganathan, B., Ralph, E., Papageorghiou, A.T. et al. Raised Maternal Serum Cystatin C: An Early Pregnancy Marker for Preeclampsia. Reprod. Sci. 16, 788–793 (2009). https://doi.org/10.1177/1933719109336618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109336618

Key words

Navigation