Skip to main content
Log in

Heart Rate Variability Analysis Allows Early Asphyxia Detection in Ovine Fetus

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal heart rate (FHR) monitoring is commonly used to predict asphyxia but clinical and experimental studies have questioned its diagnostic value. We examined the usefulness of fetal heart rate variability (fHRV) measures in detecting early asphyxia using chronically instrumented fetal sheep under normoxic (n = 6) and asphyxic conditions (3 umbilical cord occlusions, n = 6). The occlusions consistently led to pH decreases from 7.35 ± 0.01 to 7.09 ± 0.03 (V < .05). FHR showed biphasic deceleration during each occlusion, associated with increasing arterial blood pressure (V < .05). RMSSD, an index of vagal modulation of fHRV, increased consistently during repeated occlusion induced FHR decelerations (V < .05). Under normoxic conditions, RMSSD did not change during FHR decelerations and decreased during FHR accelerations (V < .05). Our results suggest that an increase of RMSSD in association with FHR decelerations reflects initial vagal activation during fetal asphyxia. RMSSD may accurately identify asphyxic fetuses early. Clinical validation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacDonald D. Cerebral palsy and intrapartum fetal monitoring. N Engl J Med. 1996;334:658–660.

    Article  Google Scholar 

  2. Low JA. Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynecol Res. 2004;30:276–286.

    Article  Google Scholar 

  3. Oppenheimer LW, Lewinsky RM. Power spectral analysis of fetal heart rate. Baillieres Clin Obstet Gynaecol. 1994;8:643–661.

    Article  CAS  Google Scholar 

  4. Kazandi M, Sendag F, Akercan F, Terek MC, Gundem G. Different types of variable decelerations and their effects to neonatal outcome. Singapore Med J. 2003;44:243–247.

    PubMed  Google Scholar 

  5. Williams KP, Galerneau F. Comparison of intrapartum fetal heart rate tracings in patients with neonatal seizures vs. no seizures: what are the differences? J Perinat Med. 2004;32:422–425.

    Article  Google Scholar 

  6. Freeman RK. Problems with intrapartum fetal heart rate monitoring interpretation and patient management. Obstet Gynecol. 2002;100:813–826.

    PubMed  Google Scholar 

  7. Süra SM, Ojala TH, Vahlberg TJ, et al. Marked fetal acidosis and specific changes in power spectrum analysis of fetal heart rate variability recorded during the last hour of labour. Bjog. 2005;112:418–423.

    Article  Google Scholar 

  8. George S, Gunn AJ, Westgate JA, Brabyn C, Guan J, Bennet L. Fetal heart rate variability and brain stem injury after asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2004;287:R925–R933.

    Article  CAS  Google Scholar 

  9. Ikeda T, Murata Y, Quilligan EJ, et al. Fetal heart rate patterns in postasphyxiated fetal lambs with brain damage. Am J Obstet Gynecol. 1998;179:1329–1337.

    Article  CAS  Google Scholar 

  10. Westgate JA, Bennet L, Gunn AJ. Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. Br J Obstet Gynaecol. 1999;106:664–671.

    Article  CAS  Google Scholar 

  11. Thacker S, Stroup D, Peterson H. Efficacy and safety of intrapartum electronic fetal monitoring: an update. Obstet Gynecol. 1995;86:613–620.

    CAS  PubMed  Google Scholar 

  12. de Haan HH, Gunn AJ, Gluckman PD. Fetal heart rate changes do not reflect cardiovascular deterioration during brief repeated umbilical cord occlusions in near-term fetal lambs. Am J Obstet Gynecol. 1997;176(1 pt 1):8–17.

    Article  Google Scholar 

  13. Parer JT. Electronic fetal heart rate monitoring: a story of survival. Obstet Gynecol Surv. 2003;58:561–563.

    Article  CAS  Google Scholar 

  14. Electronic fetal heart rate monitoring. Research guidelines for interpretation. National Institute of Child Health and Human Development Research Planning Workshop. Am J Obstet Gynecol. 1997;177:1385–1390.

    Article  Google Scholar 

  15. Malcus P. Antenatal fetal surveillance. Curr Opin Obstet Gynecol. 2004;16:123–128.

    Article  Google Scholar 

  16. Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–1065.

    Article  Google Scholar 

  17. Muller T, Lohle M, Schubert H, et al. Developmental changes in cerebral autoregulatory capacity in the fetal sheep parietal cortex. J Physiol. 2002;539(pt 3):957–967.

    Article  Google Scholar 

  18. Yu ZY, Lumbers ER. Measurement of baroreceptor-mediated effects on heart rate variability in fetal sheep. Pediatr Res. 2000;47:233–239.

    Article  CAS  Google Scholar 

  19. Frasch MG, Muller T, Wicher C, et al. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep. J Physiol. 2007;579(pt 3):893–907.

    Article  CAS  Google Scholar 

  20. Groome LJ, Mooney DM, Bentz LS, Singh KP. Spectral analysis of heart rate variability during quiet sleep in normal human fetuses between 36 and 40 weeks of gestation. Early Hum Dev. 1994;38:1–9.

    Article  CAS  Google Scholar 

  21. Troeger C, Schaub AF, Bemasconi P, Hosli I, Holzgreve W. Spectral analysis of fetal heart rate variability in fetuses with supraventricular extrasystoles. Fetal Diagn Ther. 2003;18:284–288.

    Article  Google Scholar 

  22. Mallard EC, Williams CE, Johnston BM, Gunning MI, Davis S, Gluckman PD. Repeated episodes of umbilical cord occlusion in fetal sheep lead to preferential damage to the striatum and sensitize the heart to further insults. Pediatr Res. 1995;37:707–713.

    Article  CAS  Google Scholar 

  23. Schwab M, Müller T, Loehle M, et al. Glucocorticoid (GC) induced maturation of cerebral autoregulation may explain the decreased incidence of intraventricular hemorrhage (IVH) and increased risk of periventricular leukomalacia (PVL). J Soc Gynecol Investig. 2004; 11(2 suppl):192A.

  24. Yawno T, Yan EB, Walker DW, Hirst JJ. Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience. 2007;146:1726–1733.

    Article  CAS  Google Scholar 

  25. Bartelds B, van Bel F, Teitel DF, Rudolph AM. Carotid, not aortic, chemoreceptors mediate the fetal cardiovascular response to acute hypoxemia in lambs. Pediatr Res. 1993;34:51–55.

    Article  CAS  Google Scholar 

  26. Itskovitz J, LaGamma EF, Bristow J, Rudolph AM. Cardiovascular responses to hypoxemia in sinoaortic-denervated fetal sheep. Pediatr Res. 1991;30:381–385.

    Article  CAS  Google Scholar 

  27. Boddy K, Dawes GS, Fisher R, Pinter S, Robinson JS. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974;243:599–618.

    Article  CAS  Google Scholar 

  28. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461:431–449.

    Article  CAS  Google Scholar 

  29. Groome LJ, Loizou PC, Holland SB, Smith LA, Hoff C. High vagal tone is associated with more efficient regulation of homeostasis in low-risk human fetuses. Dev Psychobiol. 1999;35:25–34.

    Article  CAS  Google Scholar 

  30. Jensen A, Gamier Y, Berger R. Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol. 1999;84:155–172.

    Article  CAS  Google Scholar 

  31. Dawes G, Meir YJ, Mandruzzato GP. Computerized evaluation of fetal heart-rate patterns. J Perinat Med. 1994;22:491–499.

    Article  CAS  Google Scholar 

  32. Zhuravlev YE, Rassi D, Mishin AA, Emery SJ. Dynamic analysis of beat-to-beat fetal heart rate variability recorded by SQUID magnetometer: quantification of sympatho-vagal balance. Early Hum Dev. 2002;66:1–10.

    Article  Google Scholar 

  33. Karin J, Hirsch M, Akselrod S. An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res. 1993;34:134–138.

    Article  CAS  Google Scholar 

  34. David M, Hirsch M, Karin J, Toledo E, Akselrod S. An estimate of fetal autonomic state by time-frequency analysis of fetal heart rate variability. J Appl Physiol. 2007;102:1057–1064.

    Article  Google Scholar 

  35. Blad S, Welin AK, Kjellmer I, Rosen KG, Mallard C. ECG and heart rate variability changes in preterm and near-term fetal lamb following LPS exposure. Reprod Sci. 2008;15(6):572–583.

    Article  CAS  Google Scholar 

  36. Ross MG, Devoe LD, Rosen KG. ST-segment analysis of the fetal electrocardiogram improves fetal heart rate tracing interpretation and clinical decision making. J Matern Fetal Neonatal Med. 2004;15:181–185.

    Article  CAS  Google Scholar 

  37. Rosen KG, Hokegard KH, Kjellmer I. A study of the relationship between the electrocardiogram and hemodynamics in the fetal lamb during asphyxia. Acta Physiol Scand. 1976;98:275–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Frasch MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frasch, M.G., Müller, T., Weiss, C. et al. Heart Rate Variability Analysis Allows Early Asphyxia Detection in Ovine Fetus. Reprod. Sci. 16, 509–517 (2009). https://doi.org/10.1177/1933719108327597

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108327597

Key words

Navigation