Skip to main content

Advertisement

Log in

The Altered Distribution of the Steroid Hormone Receptors and the Chaperone Immunophilin FKBP52 in a Baboon Model of Endometriosis Is Associated With Progesterone Resistance During the Window of Uterine Receptivity

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2007

This article has been updated

Abstract

This study examines the distribution of estrogen receptors (ESR), progesterone receptors (Pgr), and the chaperone immunophilin FKBP52 in the eutopic endometrium in a baboon model of endometriosis during the window of receptivity to determine if their aberrant distribution contributes to reduced fecundity. Endometriosis was induced by inoculation of menstrual endometrium into the peritoneal cavity. Eutopic endometrium was collected at 3, 6, 9, 12, and 15 months postinoculation. Western blot (WB) and immunohistochemical analyses were performed. Isolated endometrial stromal cells were cultured in the presence or absence of steroid hormones. In animals with endometriosis, ESR-1 (ER-α) decreased in endometrial stromal cells, while ESR-2 (ER-β) was reduced in both glandular epithelial (GE) and stromal cells. Immunoreactive total Pgr was markedly diminished in the GE, which was confirmed by WB analysis. Furthermore, treatment of isolated stromal cells from baboons with endometriosis with hormones did not increase levels of PRA or PRB as in control baboons. FKBP52 was also reduced in the eutopic endometrium of baboons with endometriosis. Endometriosis results in an aberrant distribution of ESR-1, ESR-2, Pgr, and FKBP52 in the eutopic endometrium. The authors propose that a dysregulation in the paracrine signaling between the endometrial stromal and GE cells reduces the responsiveness of Pgr, creating an endometrial environment that is unsuitable for implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 30 December 2007

    In the article “The Altered Distribution of the Steroid Hormone Receptors and the Chaperone Immunophilin FKBP52 in a Baboon Model of Endometriosis Is Associated With Progesterone Resistance During the Window of Uterine Receptivity” by Kevin S. Jackson, PhD, Allison Brudney, BS, Julie M. Hastings, PhD, Patricia A. Mavrogianis, MS, J. Julie Kim, PhD, and Asgerally T. Fazleabas, PhD, the following figures should have appeared in color

References

  1. Olive DL, Schwartz LB Endometriosis. N Engl J Med. 1993;328:1759–1769.

    CAS  Google Scholar 

  2. Sampson JA Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the pelvic cavity. Am J Obstet Gynecol. 1927;14:422–469.

    Article  Google Scholar 

  3. Igarashi TM, Bruner-Tran KL, Yeaman GR, et al. Reduced expression of progesterone receptor B in the endometrium of women with endometriosis in cocultures of endometrial cells exposed to 2,3,7,8-tetrachlordibenzo-p-dioxin. Fertil Steril. 2005;84:67–74.

    Article  CAS  PubMed  Google Scholar 

  4. Leyendecker G., Herbertz M., Kunz G., Mall G. Endometriosis results from the dislocation of basal endometrium. Hum Reprod. 2002;17:2752–2736.

    Article  Google Scholar 

  5. Brandenberger AW, Lebovic DI, Tee MK, et al. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod. 1999;5:671–675.

    Article  Google Scholar 

  6. Jones RK, Bulmer JN, Searle RF Immunohistochemical characterization of proliferation, oestrogen receptor and progesterone receptor expression in endometriosis: comparison of eutopic and ectopic endometrium with normal cycling endometrium. Human Reprod. 1995;10:3272–3279.

    Article  CAS  Google Scholar 

  7. Nisolle M., Casanas-Roux F., Wyns C., de Menten Y., Mathieu PE, Donnez J. Immunohistochemical analysis of estrogen and progesterone in endometrium and peritoneal endometriosis: a new quantitative method. 1994;62:751–759.

    CAS  Google Scholar 

  8. Bergqvist A., Ljungberg O., Skoog L. Immunohistochemical analysis of oestrogen and progesterone receptors in endometriotic tissue and endometrium. Hum Reprod. 1993;8: 1915–1922.

    Article  CAS  PubMed  Google Scholar 

  9. Prentice A., Randall BJ, Weddell A., et al. Ovarian steroid receptor expression in endometriosis and in two potential parent epithelia: endometrium and peritoneal mesothelium. Hum Reprod. 1992;7:1318–1325.

    Article  CAS  PubMed  Google Scholar 

  10. Lessey BA, Metzger DA, Haney AF, McCarty KS Jr. Immunohistochemical analysis of estrogen and progesterone receptors in endometriosis: comparison with normal endometrium during the menstrual cycle and the effect of medical therapy. Fertil Steril. 1989;1:409–415.

    Article  Google Scholar 

  11. D’Hooghe TM, Bambra CS, Koninckx PR Cycle fecundity in baboons of proven fertility with minimal endometriosis. Gynecol Obstet Invest. 1994;37:63–65.

    Article  PubMed  Google Scholar 

  12. D’Hooghe TM, Bambra CS, Raeymaekers BM, De Jonge I., Lauweryns JM, Konickx PR Intrapelvic injection of menstrual endometrium causes endometriosis in baboons (Papio cynocephalus and Papio anubis). Am J Obstet Gynecol. 1995;173: 125–134.

    Article  PubMed  Google Scholar 

  13. Fazleabas AT, Brudney A., Chai D., Langoi D., Bulun SE Steroid receptor and aromatase expression in baboon endometriotic lesions. Fertil Steril. 2003;(suppl 2):820–827.

    Google Scholar 

  14. Kim JJ, Taylor HS, Lu Z., et al. Altered expression of HOXA10 in endometriosis: a potential role in decidualization. Biol Reprod. In press.

  15. Gashaw I., Hasting JM, Jackson KS, Winterhager E., Fazleabas AT Induced endometriosis in the baboon (Papio anubis) increases the expression of proangiogenic factor CYR61 (CCN1) in eutopic and ectopic endometria. Biol Reprod. 2006;74:1060–1066.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor HS, Bagot C., Kardana A., Olive D., Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1238–1331.

    Google Scholar 

  17. Giudice LC, Telles TL, Lobo S., Kao L. The molecular basis for implantation failure in endometriosis: on the road to discovery. Ann N Y Acad Sci. 2002;955:252–264.

    Article  CAS  PubMed  Google Scholar 

  18. Attia GR, Zeitoun K., Edwards D., Johns A., Carr BR, Bulun SE Progesterone receptor isoform A but not B is expressed in endometriosis. J Clin Endocrinol Metab. 2000;85:2897–2902.

    CAS  PubMed  Google Scholar 

  19. Pratt WB, Czar MJ, Stancato LF, Owens JK The hsp56 immunophilin component of steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein? 1993;46:269–279.

    CAS  Google Scholar 

  20. Felts SJ, Toft DO p23: a simple protein with complex activities. Cell Stress Chaperones. 2003;8:108–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rataiczak T., Ward BK, Minchin RF Immunophilin chaperones in steroid receptor signaling. Curr Top Med Chem. 2003;3:1348–1357.

    Article  Google Scholar 

  22. Smith DF Tetratricopeptide repeat cochaperone in steroid receptor complexes. Cell Stress. 2004;9:109–121.

    Article  CAS  Google Scholar 

  23. Galat A. Peptidylproyl cis/trans isomerases (immunophilins) biological diversity—targets functions. Curr Top Med Chem. 2003;3:1315–1347.

    Article  CAS  PubMed  Google Scholar 

  24. Tranguch S., Cheung-Flynn J., Daikoku T., et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A. 2005;102: 14326–14331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daikoku T., Tranguch S., Friedman DB, Das SK, Smith DF, Dey SK Proteomic analysis identifies immunophilin FK506 binding protein 4 (FKBP52) as a downstream target of Hoxa10 in the periimplantation mouse uterus. Mol Endocrinol. 2005;3: 683–697.

    Article  CAS  Google Scholar 

  26. Satokata I., Benson G., Maas R. Sexually dimorphic sterility phenotypes in HOXA10-deficient mice. Nature. 1995;374: 460–463.

    Article  CAS  PubMed  Google Scholar 

  27. Gui Y., Zhang J., Yuan L., Lessey BA Regulation of HOXA-10 and its expression in normal and abnormal endometrium. Mol Hum Reprod. 1999;5:866–873.

    Article  CAS  PubMed  Google Scholar 

  28. Fazleabas AT, Brudney A., Gurates B., Chai D., Bulun S. A modified baboon model for endometriosis. Ann N Y Acad Sci. 2002;955:308–317.

    Article  PubMed  Google Scholar 

  29. Fazleabas AT, Donnelly KM, Srinivasan S., Fortman JD, Miller JB Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc Natl Acad Sci U S A. 1999;5:2543–2548.

    Article  Google Scholar 

  30. Hasting JM, Fazleabas AT A baboon model of endometriosis: implications for infertility. Reprod Biol Endocrinol. 2006; 4(suppl 1):S7.

    Google Scholar 

  31. Detre S., Saclani Jotti G., Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breastcarcinomas. J Clin Pathol. 1995;48: 876–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim JJ, Jaffe RC, Fazleabas AT Comparative studies on the in vitro decidualization process in the baboon (Papio anubis) and human. Biol Reprod. 1998;59:160–168.

    Article  CAS  PubMed  Google Scholar 

  33. Bronson JJ, Gellersen B. Death or survival-progesterone-dependent cell fate decisions in the human endometrial stroma. J Mol Endocrinol. 2006;36:389–398.

    Article  CAS  Google Scholar 

  34. Kim JJ, Buzzio OL, Li S., Lu Z. Role of FOX01 in regulation of insulin-like growth factor-binding protein-1 in human endometrial cells: interaction with progesterone receptor. Biol Reprod. 2005;73:833–839.

    Article  CAS  PubMed  Google Scholar 

  35. Sheridan PL, Francis MD, Horwitz KB Synthesis of human progesterone receptors in T47D cell: nascent A-B receptors are active without phosphorylation dependent post-translational maturation step. J Biol Chem. 1989;264:7054–7058.

    CAS  PubMed  Google Scholar 

  36. Mylonas I., Jeschke U., Shabani N., et al. Normal and malignant human endometrium express immunohistochemically estrogen receptor alpha (ER-alpha), estrogen receptor beta (ER-beta) and progesterone receptor (PR). Anticancer Res. 2005;23: 1679–1686.

    Google Scholar 

  37. Beliard A., Noel A., Foidart JM Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82:80–85.

    Article  PubMed  Google Scholar 

  38. Hudelist G., Keckstein J., Czerwenka K., et al. Estrogen receptor beta and matrix metalloproteinase 1 are coexpressed in uterine endometrium and endometriotic lesions of patients with endometriosis. Fertil Steril. 2005;(suppl 2):1249–1256.

    Google Scholar 

  39. Mote PA, Balleine RL, Mcgowan EM, Clarke CL Heterogeneity of progesterone receptors A and B expression in human endometrial glands and stroma. Human Reprod. 2000; 15(suppl 3):48–56.

    Article  CAS  Google Scholar 

  40. Buchanan DL, Setiawan T., Lubahn DB, et al. Tissue compartment—specific estrogen alpha participation in the mouse uterine epithelial secretory response. Endocrinology. 1999;40: 484–491.

    Article  Google Scholar 

  41. Kurita T., Young P., Brody JR, Lydon JP, O’Malley BW, Cunha GR Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology. 1998;11: 4708–4713.

    Article  Google Scholar 

  42. Kurita T., Lee K., Saunders PT, et al. Regulation of progesterone receptors and decidualization in uterine stroma of the estrogen receptor-alpha knockout mouse. Biol Reprod. 2001;64:272–283.

    Article  CAS  PubMed  Google Scholar 

  43. Kurita T., Lee KJ, Cooke PS, Lydon JP, Cunha GR Paracrine regulation of epithelial progesterone receptor and lactoferrin by progesterone in the mouse uterus. Biol Reprod. 2000;62: 831–838.

    Article  CAS  PubMed  Google Scholar 

  44. Kurita T., Lee KJ, Cooke PS, Lydon JP, Cunha GR Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biol Reprod. 2000;4:821–830.

    Article  Google Scholar 

  45. Cooke PS, Buchanan DL, Yourn P., et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997;94:6535–6540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Osteen KG, Bruner-Tran KL, Eisenbert E. Reduced progesterone action during endometrial maturation: a potential risk factor for the development of endometriosis. Fertil Steril. 2005;83:529–537.

    Article  CAS  PubMed  Google Scholar 

  47. Sayouret JF, Bailly A., Misrahi M., et al. Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene. EMBO J. 1991;10: 1875–1883.

    Article  Google Scholar 

  48. Kastner P., Krust A., Turcotte B., et al. Two distinct estrogen regulated promoters generate transcripts encoding the two functionally different human progesterone receptors forms A and B. EMBO J. 1990;9:1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Braundmeier AG, Fazleabas AT, Lessey BA, Guo H., Toole BP, Nowak RA Extracellular matrix metalloproteinase inducer regulates metalloproteinases in human uterine endometrium. J Clin Endocrinol Metab. 2006;91:2359–2365.

    Article  CAS  Google Scholar 

  50. Giudice LC, Kao LC Endometriosis. Lancet. 2004;364: 1789–1799.

    Article  PubMed  Google Scholar 

  51. Lessey BA Implantation defects in infertile women with endometriosis. Ann N Y Acad Sci. 2002;955:265–280.

    Article  PubMed  Google Scholar 

  52. D’Hooghe TM. Clinical relevance of the baboon as a model for the study of endometriosis. Fertil Steril. 1997;68:613–625.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgerally T. Fazleabas PhD.

Additional information

This work was supported by the National Institutes of Health National Institute of Child Health and Human Development Specialized Cooperative Centers Program in Reproduction Research (SCCPRR) U54 HD40093 (to ATF.), a minority postdoctoral training supplement (to KSJ), and HD044715 (to JJK.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, K.S., Brudney, A., Hastings, J.M. et al. The Altered Distribution of the Steroid Hormone Receptors and the Chaperone Immunophilin FKBP52 in a Baboon Model of Endometriosis Is Associated With Progesterone Resistance During the Window of Uterine Receptivity. Reprod. Sci. 14, 137–150 (2007). https://doi.org/10.1177/1933719106298409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719106298409

Key words

Navigation