Skip to main content
Log in

Age-Related Changes in Water Transport by Corneal Endothelial Cells in Rats

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Senescence-associated alterations in the structure and function of the cornea make it more sensitive to such external agents as surgery, traumas, and disease, resulting in edema and vision impairment that can be corrected only by cornea transplantation. The role of aquaporins for cornea endothelium functioning, as well as age-related changes in their activity, is not entirely understood. We have studied age-related changes in the water permeability (Pf) of corneal endothelium plasma membranes and the mRNA expression levels of aquaporins aqp1 and aqp3 genes in Wistar and senescence-accelerated OXYS rats. At the age of 3 to 18 months, Pf increased in Wistar rats and decreased in OXYS rats, becoming two times lower than in the Wistar line. The expression of AQP1 mRNA (studied by real-time PCR) in the endothelium was the same in Wistar and OXYS rats at the age of 3 months. By the age of 18 months, it increased only in Wistar rats and became two times higher than in OXYS rats. The expression of aqp3 mRNA in the endothelium of 3-month-old OXYS rats was half that of Wistar rats and did not change with age, while it decreased in Wistar rats and at 18 months was four times lower than at 3 months. We propose that the increased water permeability of endothelial cells in Wistar rats is adaptive and compensates for the decrease in endothelial cell density with age, while the accelerated aging of OXYS rats eliminates this compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolosova, N.G., Stefanova, N.A., Korbolina, E.E., Fursova, A.Zh., and Kozhevnikova, O.S., Senescenceaccelerated OXYS rats: a genetic model of premature aging and age-related diseases, Adv. Gerontol., 2014, vol. 4, no. 4, pp. 294–298

    Article  Google Scholar 

  2. Kolosova, N.G., Lebedev, P.A., Fursova, A.Zh., et al., Untimely aging OXYS rats as a model of senile cataracts, Usp. Gerontol., 2003, vol. 12, no. 12, pp. 143–148

    CAS  Google Scholar 

  3. Saprunova, V.B., Pilipenko, D.I., Alexeevsky, A.V., Fursova, A.Z., Kolosova, N.G., and Bakeeva, L.E., Lipofuscin granule dynamics during development of age-related macular degeneration, Biochemistry (Moscow), 2010, vol. 75, no. 2, pp. 130–138

    PubMed  CAS  Google Scholar 

  4. Armitage, W.J., Preservation of human cornea, Transfus. Med. Hemother., 2011, vol. 38, pp. 143–147

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonanno, J.A., Molecular mechanisms underlying the corneal endothelial pump, Exp. Eye Res., 2012, vol. 95, no. 1, pp. 2–7

    Article  PubMed  CAS  Google Scholar 

  6. Bourne, W.M. and McLaren, J.W., Clinical responses of the corneal endothelium, Exp. Eye Res., 2004, vol. 78, no. 3, pp. 561–572

    Article  PubMed  CAS  Google Scholar 

  7. Bryant, M.R. and McDonnell, P.J., A triphasic analysis of corneal swelling and hydration control, J. Biomech. Eng., 1998, vol. 120, pp. 370–381

    Article  PubMed  CAS  Google Scholar 

  8. Crane, J.M. and Verkman, A.S., Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane, Biophys. J., 2008, vol. 94, no. 2, pp. 702–713

    Article  PubMed  CAS  Google Scholar 

  9. Hamann, S., Zeuthen, T., La Cour, M., et al., Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye, Am. J. Physiol., 1998, vol. 274, pp. C1332–C1345.

    Article  PubMed  CAS  Google Scholar 

  10. Ivanova, L.N., Babina, A.V., Baturina, G.S., and Katkova, L.E., Effect of vasopressin on the expression of genes for key enzymes of hyaluronan turn over in Wistar Albino Glaxo and Brattleboro rat kidneys, Exp. Physiol., 2013, vol. 98, no. 11, pp. 1608–1619

    Article  PubMed  CAS  Google Scholar 

  11. Kang, F., Kuang, K., Li, J., and Fischbarg, J., Cultured bovine corneal epithelial cells express a functional aquaporin water channel, Invest. Ophthalmol. Visual Sci., 1999, vol. 40, pp. 253–257

    CAS  Google Scholar 

  12. Kozhevnikova, O.S., Korbolina, E.E., Ershov, N.I., and Kolosova, N.G., Rat retinal transcriptome: effects of aging and AMD-like retinopathy, Cell Cycle, 2013, vol. 12, pp. 1745–1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kuang, K., Yiming, M., Wen, Q., et al., Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice, Exp. Eye Res., 2004, vol. 78, no. 4, pp. 791–798

    Article  PubMed  CAS  Google Scholar 

  14. Li, J., Kuang, K., Nielsen, S., and Fischbarg, J., Molecular identification and immunolocalization of the water channel protein aquaporin 1 in CBCECs, Invest. Ophthalmol. Visual Sci., 1999, no. 40, pp. 1288–1292.

    CAS  Google Scholar 

  15. Maurice, D.M., The location of the fluid pump in the cornea, J. Physiol., 1972, vol. 221, pp. 43–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mergler, S. and Pleyer, U., The human corneal endothelium: New insights into electrophysiology and ion channels, Progr. Retinal Eye Res., 2007, vol. 26, pp. 359–378

    Article  CAS  Google Scholar 

  17. Robben, J.H., Knoers, N.V., and Deen, P.M., Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus, Am. J. Physiol. Renal. Physiol., 2006, vol. 291, pp. F257–F270.

    Article  PubMed  CAS  Google Scholar 

  18. Shankardas, J., Patil, R.V., and Vishwanatha, J.K., Effect of down-regulation of aquaporins in human corneal endothelial and epithelial cell lines, Mol. Vision, 2010, vol. 16, pp. 1538–1548

    CAS  Google Scholar 

  19. Solenov, E., Watanabe, H., Manley, G.T., and Verkman, A.S., Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method, Am. J. Physiol. Cell Physiol., 2004, vol. 286, pp. 426–432

    Article  Google Scholar 

  20. Thiagarajah, J.R. and Verkman, A.S., Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling, J. Biol. Chem., 2002, vol. 277, vol. 21, pp. 19139–19144.

    Article  PubMed  CAS  Google Scholar 

  21. Verkman, A.S., Anderson, M.O., and Papadopoulos, M.C., Aquaporins: important but elusive drug targets, Nat. Rev. Drug Discovery, 2014, vol. 13, no. 4, pp. 259–277

    Article  PubMed  CAS  Google Scholar 

  22. Whitcher, J.P., Srinivasan, M., and Upadhyay, M.P., Corneal blindness: a global perspective, Bull. W.H.O., 2001, vol. 79, pp. 214–221

    PubMed  CAS  Google Scholar 

  23. Yu, D., Thelin, W.R., Randell, S.H., and Boucher, R.C., Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland, Exp. Eye Res., 2012, vol. 103, pp. 22–32

    Article  PubMed  CAS  Google Scholar 

  24. Zarogiannis, S.G., Ilyaskin, A.V., Baturina, G.S., et al., Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks, Math. Biosci., 2013, vol. 244, no. 2, pp. 176–187

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Solenov.

Additional information

Original Russian Text © G.S. Baturina, L.E. Katkova, N.G. Kolosova, E.I. Solenov, 2017, published in Uspekhi Gerontologii, 2017, Vol. 30, No. 5, pp. 659–664.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baturina, G.S., Katkova, L.E., Kolosova, N.G. et al. Age-Related Changes in Water Transport by Corneal Endothelial Cells in Rats. Adv Gerontol 8, 153–157 (2018). https://doi.org/10.1134/S2079057018020029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057018020029

Keywords

Navigation