Skip to main content
Log in

In vitro photodynamic antimicrobial chemotherapy in dentine contaminated by cariogenic bacteria

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The development of a method to ensure bacterial-free substrates without extensive cavity preparation would be highly useful to dentistry, since there is no currently available effective method for killing residual bacteria in dentinal tissue. This randomized in vitro study determined parameters for using toluidine blue O (TBO) with a light-emitting diode (LED) for dentine caries disinfection and monitored intrapulpal/periodontal temperatures during irradiation. Occlusal human dentine slabs were immersed in Streptococcus mutans culture for demineralization induction. Slabs were allocated to 10 groups (n = 15), which were treated with 0.1 mg ml−1 TBO with 5 min of incubation time or 0.9% NaCl solution for 5, 10 or 15 min, and submitted or not to irradiation for 5, 10 or 15 min (47, 94, and 144 J/cm2). Before and after treatments, dentine samples were analyzed with regard to S. mutans counts. In whole teeth, temperature in pulp and periodontium was measured by thermocouples during irradiation. Kruskal-Wallis/Student-Newman-Keuls, and ANOVA/Tukey test were respectively utilized to compare log reductions and temperature rises between groups. Bacterial reduction was observed when dentine was exposed to both TBO and LED at all irradiation times, as well as to LED alone for 10 and 15 min. Temperature increases lower than 2°C were observed for either pulp or periodontium. Concluding, LED combined with TBO is a safe and effective approach for dentine caries disinfection. Nevertheless, additional studies should be conducted to determine the influence of the irradiation in S. mutans viability in dentinal surface/tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ogushi and T. Fusayama, J. Dent. Res. 54, 1019 (1975).

    Google Scholar 

  2. A. V. Zavgorodniy, R. Rohanizadeh, and M. V. Swain, Arch. Oral Biol. 53, 124 (2008).

    Article  Google Scholar 

  3. T. Burns, M. Wilson, and G. J. Pearson, J. Dent. 22, 273 (1994).

    Article  Google Scholar 

  4. E. A. Kidd and S. Joyston-Bechal, Essentials of Dental Caries: The Disease and its Management (Oxford Univ., Oxford, 1997), p. 73.

    Google Scholar 

  5. A. Banerjee, T. F. Watson, and E. A. Kidd, Br. Dent. J. 188, 476 (2000).

    Article  Google Scholar 

  6. E. J. Mertz-Fairhurst, J. W. Curtis, Jr., J. W. Ergle, F. A. Rueggeberg, and S. M. Adair, J. Am. Dent. Assoc. 129, 55 (1998).

    Google Scholar 

  7. T. Burns, M. Wilson, and G. J. Pearson, Caries Res. 29, 192 (1995).

    Article  Google Scholar 

  8. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Photodiagn. Photodyn. Ther. 1, 279 (2004).

    Article  Google Scholar 

  9. O. E. Akilov, K. O’Riordan, S. Kosaka, and T. Hasan, Med. Laser Appl. 21, 251 (2006).

    Article  Google Scholar 

  10. M. R. Hamblin and T. Hasan, Photochem. Photobial. Sci. 3, 436 (2004).

    Article  Google Scholar 

  11. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci, Lasers Surg. Med. 38, 468 (2006).

    Article  Google Scholar 

  12. J. Dobson and M. Wilson, Arch. Oral Biol. 37, 883 (1992).

    Article  Google Scholar 

  13. G. J. Stringer, P. S. Bird, and L. J. Walsh, Aust. Dent. J. 45, 94 (2000).

    Google Scholar 

  14. J. A. Williams, G. J. Pearson, M. J. Colles, and M. Wilson, Caries Res. 37, 190 (2003).

    Article  Google Scholar 

  15. T. P. Paulino, K. F. Ribeiro, G. Thedei, Jr., A. C. Tedesco, and P. Ciancaglini, Arch. Oral Biol. 50, 353 (2005).

    Article  Google Scholar 

  16. I. C. Zanin, M. M. Lobo, L. K. Rodrigues, L. A. Pimenta, J. F. Hofling, and R. B. Goncalves, Eur. J. Oral Sci. 114, 64 (2006).

    Article  Google Scholar 

  17. I. M. Bevilacqua, R. A. Nicolau, S. Khouri, A. Brugnera, Jr., G. R. Teodoro, R. A. Zangaro, and M. T. Pacheco, Photomed. Laser Surg. 25, 513 (2007).

    Article  Google Scholar 

  18. J. A. Williams, G. J. Pearson, M. J. Colles, and M. Wilson, Caries Res. 38, 530 (2004).

    Article  Google Scholar 

  19. J. S. Giusti, L. Santos-Pinto, A. C. Pizzolito, K. Helmerson, E. Carvalho-Filho, C. Kurachi, and V. C. Bagnato, Photomed. Laser Surg. 26, 279 (2008).

    Article  Google Scholar 

  20. C. T. Bolliger, J. P. Zellweger, T. Danielsson, X. Van Biljon, A. Robidou, A. Westin, A. P. Perruchoud, and U. Sawe, Biol. Med. J. 321, 329 (2000).

    Google Scholar 

  21. E. A. Pantera, Jr., and G. S. Schuster, J. Dent. Educ. 54, 283 (1990).

    Google Scholar 

  22. J. F. O’Neill, C. Hope, and M. Wilson, Lasers Surg. Med. 31, 86 (2002).

    Article  Google Scholar 

  23. I. C. Zanin, R. B. Goncalves, A. Brugnera, Jr., C. K. Hope, and J. Pratten, J. Antimicrob. Chemother. 56, 324 (2005).

    Article  Google Scholar 

  24. P. A. Ana, A. Blay, W. Miyakawa, and D. M. Zezell, Laser Phys. Lett. 4, 827 (2007).

    Article  Google Scholar 

  25. A. R. Yazici, A. Khanbodaghi, and G. Kugel, J. Contemp. Dent. Pract. 8, 19 (2007).

    Google Scholar 

  26. D. Bakhmutov, S. Gonchukov, O. Kharchenko, O. Voytenok, and B. Zubov, Laser Phys. Lett. 5, 375 (2008).

    Article  Google Scholar 

  27. A. Z. Freitas, D. M. Zezell, M. P. A. Mayer, A. C. Ribeiro, A. S. L. Gomes, and N. D. Vieira, Jr., Laser Phys. Lett. 6, 896 (2009).

    Article  Google Scholar 

  28. S. Wood, D. Metcalf, D. Devine, and C. Robinson, J. Antimicrob. Chemother. 57, 680 (2006).

    Article  Google Scholar 

  29. Y. Kotoku, J. Kato, G. Akashi, Y. Hirai, and K. Ishihara, Laser Phys. Lett. 6, 388 (2009).

    Article  Google Scholar 

  30. R. A. Prates, E. G. Silva, A. M. Yamada, Jr., L. C. Suzuki, C. R. Paula, and M. S. Ribeiro, Laser Phys. 19, 1038 (2009).

    Article  ADS  Google Scholar 

  31. L. Brancaleon and H. Moseley, Lasers Med. Sci. 17, 173 (2002).

    Article  Google Scholar 

  32. J. F. O’Neill, M. Wilson, and M. Wainwright, J. Chemother. 15, 329 (2003).

    Google Scholar 

  33. M. L. Higgins and G. D. Shockman, J. Bacteriol. 101, 643 (1970).

    Google Scholar 

  34. A. L. Koch, J. Theor. Biol. 134, 463 (1988).

    Article  Google Scholar 

  35. B. S. Lee, Y. W. Lin, J. S. Chia, T. T. Hsieh, M. H. Chen, P. C. Lin, and W. H. Lan, Lasers Surg. Med. 38, 62 (2006).

    Article  Google Scholar 

  36. L. Zach and G. Cohen, Oral Surg. Oral Med. Oral Patol. 19, 515 (1965).

    Article  Google Scholar 

  37. S. Nammour, T. Zeinoun, I. Bogaerts, M. Lamy, S. O. Geerts, S. B. Saba, L. Lamard, A. Peremans, and M. Limme, Lasers Med. Sci. 2 (2009, in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. A. Rodrigues.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, M.A.S., de-Paula, D.M., Lima, J.P.M. et al. In vitro photodynamic antimicrobial chemotherapy in dentine contaminated by cariogenic bacteria. Laser Phys. 20, 1504–1513 (2010). https://doi.org/10.1134/S1054660X10110174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10110174

Keywords

Navigation