Skip to main content
Log in

Analysis of GJB6 (Сx30) and GJB3 (Сx31) genes in deaf patients with monoallelic mutations in GJB2 (Сx26) gene in the Sakha Republic (Yakutia)

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Тhe DNA testing of autosomal recessive deafness type 1A (DFNB1A, MIM 220290) is complicated when deaf patients have only monoallelic (heterozygous) recessive mutations in the GJB2 (Сх26) gene that is uninformative for establishment of diagnosis. Such patients may be “random” heterozygous carriers of GJB2 mutations as well as have the mutant allele in a cis-regulatory region of GJB2 gene, in element genes encoding other connexins: GJB6 (Сх30) or GJB3 (Сх31). Previous studies of genetic causes of hearing loss in patients from Yakutia were directed to search for only mutations in the GJB2 gene, and the DNA diagnostics was uninformative for 9.7% (38/393) of the patients with monoallelic GJB2 mutations. In this work the search for mutations in genes GJB3 and GJB6 and two deletions с.del(GJB6-D13S1830) and с.del(GJB6-D13S1854) to the cis-regulatory region of GJB2 gene was conducted in 35 patients with GJB2 monoallelic mutations and in 104 normal hearing individuals. The genes studied are two synonymous substitution c.489G>A (р.Leu163Leu) (GJB6) and c.357C>T (р.Asn119Asn) (GJB3) have been found, probably do not have clinical significance, and two nonsynonymous substitution c.301G>A (p.Glu101Lys) (GJB6) and с.580G>A (p.Ala194Thr) (GJB3). Additional experimental evidences are needed for confirmation of pathogenic significance of detected nonsynonymous substitutions in development of hearing loss in studied patients. Diagnosis of the DFNB1A was confirmed in only one patient, who was discovered by the deletion с.del(GJB6-D13S1830) (GJB2) in combination with a recessive mutation с.35delG (GJB2). In general, our results indicate low contribution of mutations in genes GJB6 and GJB3 in hearing loss etiology in Yakutia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asma, A., Ashwaq, A., Norzana, A.G., et al., The association between GJB2 mutation and GJB6 gene in non syndromic hearing loss school children, Med. J. Malays., 2011, vol. 66, no. 2, pp. 124–128.

    CAS  Google Scholar 

  2. Azaiez, H., Chamberlin, G.P., Fischer, S.M., et al., GJB2: the spectrum of deafness-causing allele variants and their phenotype, Hum. Mutat., 2004, vol. 24, no. 4, pp. 305–311. doi 10.1002/humu.20084

    Article  CAS  PubMed  Google Scholar 

  3. Lipan, M., Ouyang, X., and Yan, D., Clinical comparison of hearing-impaired patients with DFNB1 against heterozygote carriers of connexin 26 mutations, Laryngoscope, 2011, vol. 121, pp. 811–814. doi 10.1002/lary.21422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabionet, R., Zelante, L., López-Bigas, N., et al., Molecular bases of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene, Hum. Genet., 2000, vol. 106, no. 1, pp. 40–44. doi 10.1007/s004399900192

    Article  CAS  PubMed  Google Scholar 

  5. del Castillo, I., Villamar, M., Moreno-Pelayo, M.A., et al., A deletion involving the connexin 30 gene in nonsyndromic hearing impairment, N. Engl. J. Med., 2002, vol. 346, no. 4, pp. 243–249. doi 10.1056/NEJMoa012052

    Article  PubMed  Google Scholar 

  6. Del Castillo, I., Moreno-Pelayo, M.A., Del Castillo, F.J., et al., Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study, Am. J. Hum. Genet., 2003, vol. 73, no. 6, pp. 1452–1458. doi 10.1086/380205

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, X.Z., Yuan, Y., Yan, D., et al., Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31, Hum. Genet., 2009, vol. 125, no. 1, pp. 53–62. doi 10.1007/s00439- 008-0602-9

    Article  CAS  PubMed  Google Scholar 

  8. Pallares-Ruiz, N., Blanchet, P., Mondain, M., et al., A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect?, Eur. J. Hum. Genet., 2002, vol. 10, no. 1, pp. 72–76. doi 10.1038/sj/ejhg/5200762

    Article  CAS  PubMed  Google Scholar 

  9. Nance, W., The genetics of deafness, Ment. Retard. Dev. Disabil. Res. Rev., 2003, vol. 9, no. 2, pp. 109–119. doi 10.1002/mrdd.10067

    Article  PubMed  Google Scholar 

  10. Petersen, M. and Willems, P., Non-syndromic, autosomal-recessive deafness, Clin. Genet., 2006, vol. 69, no. 5, pp. 371–392. doi 10.1111/j.1399-0004.2006.00613.x

    Article  CAS  PubMed  Google Scholar 

  11. Kikuchi, T., Kurima, R.S., Paul, D.L., and Adams, J.C., Gap junction in the rat cochlea: immunohistochemical and ultrastructural analysis, Anat. Embriol. (Berlin), 1995, vol. 191, no. 2, pp. 101–118. doi 10.1007/BF00186783

    CAS  Google Scholar 

  12. Lautermann, J., Cate, W.J., Altenhoff, P., et al., Expression of the gap-junction connexins 26 and 30 in the rat cochlea, Cell. Tissue Res., 1998, vol. 294, no. 3, pp. 415–420. doi 10.1007/s004410051192

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y.P. and Zhao, H.B., Cellular characterization of connexin-26 and connexin-30 expression in the cochlear lateral wall, Cell. Tissue Res., 2008, vol. 333, pp. 395–403. doi 10.1007/s00441-008-0641-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forge, A., Marziano, N.K., Casalotti, S.O., et al., The inner ear contains heteromeric channels composed of Cx26 and Cx30 and deafness-related mutations in Cx26 have a dominant negative effect on Cx30, Cell. Commun. Adhes., 2003, vol. 10, no. 4—6, pp. 341–346. doi 10.1080/cac.10.4-6.341.346

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, H.B. and Yu, N., Distinct and gradient distributions of connexin-26 and connexin-30 in the cochlear sensory epithelium of guinea pigs, J. Comp. Neurol., 2006, vol. 499, pp. 506–518. doi 10.1002/cne.21113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. del Castillo, F.J., Rodríguez-Ballesteros, M., Alvarez, A., et al., A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment, J. Med. Genet., 2005, vol. 42, no. 7, pp. 588–594. doi 10.1136/jmg. 2004.028324

    Article  PubMed  PubMed Central  Google Scholar 

  17. Common, J.E., Bitner-Glindzicz, M., O’Toole, E.A., et al., Specific loss of connexin-26 expression in ductal sweat gland epithelium associated with the deletion mutation del(GJB6-D13S1830), Clin. Exp. Dermatol., 2005, vol. 30, no. 6, pp. 688–693. doi 10.1111/j.1365- 2230.2005.01878.x

    Article  CAS  PubMed  Google Scholar 

  18. Wilch, E., Zhu, M., Burkhart, K.B., et al., Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele, Am. J. Hum. Genet., 2006, vol. 79, no. 1, pp. 174–179. doi 10.1086/505333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feldmann, D., Le Maréchal, C., Jonard, L., et al., A new large deletion in the DFNB1 locus causes nonsyndromic hearing loss, Eur. J. Med. Genet., 2009, vol. 52, no. 4, pp. 195–200. doi 10.1016/j.ejmg.2008.11.006

    Article  PubMed  Google Scholar 

  20. Wilch, E., Zhu, M., Burkhart, K.B., et al., A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression, Clin. Genet., 2010, vol. 78, no. 3, pp. 267–274. doi 10.1111/j.1399-0004.2010.01387.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bliznets, E.A., Makienko, O.N., Okuneva, E.G., et al., New recurrent large deletion, encompassing both GJB2 and GB6 genes, results in isolated sensorineural hearing impairment with autosomal recessive mode of inheritance, Russ. J. Genet., 2014, vol. 50, no. 4, pp. 415–420.

    Article  Google Scholar 

  22. Pshennikova, V.G., Barashkov, N.A., Teryutin, F.M., et al., GJB2 mutations spectrum and frequency among the patients with congenital hearing loss in the Republic of Sakha (Yakutia), Med. Genet., 2015, vol. 14, no. 6 (156), pp. 10–23.

    Google Scholar 

  23. Sirmaci, A., Akcayoz-Duman, D., and Tekin, M., The c.IVS1+1G>A mutation in the GJB2 gene is prevalent and large deletions involving the GJB6 gene are not present in the Turkish population, J. Genet., 2006, vol. 85, no. 3, pp. 213–216. doi 10.1007/BF02935334

    Article  CAS  PubMed  Google Scholar 

  24. Kelley, P.M., Harris, D.J., Comer, B.C., et al., Novel mutations in the connexin-26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss, Am. J. Hum. Genet., 1998, vol. 62, no. 4, pp. 792–799. doi 10.1086/301807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelsell, D.P., Dunlop, J., Stevens, H.P., et al., Connexin-26 mutations in hereditary nonsyndromic sensorineural deafness, Nature, 1997, vol. 387, no. 6628, pp. 80–83. doi 10.1038/387080a0

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X.Z., Xia, X.J., Xu, L.R., et al., Mutations in connexin-31 underlie recessive as well as dominant nonsyndromic hearing loss, Hum. Mol. Genet., 2000, vol. 9, no. 1, pp. 63–67. doi 10.1093/hmg/9.1.63

    Article  CAS  PubMed  Google Scholar 

  27. Adzhubei, I.A., Schmidt, S., Peshkin, L., et al., A method and server for predicting damaging missense mutations, Nat. Methods, 2010, vol. 7, no. 4, pp. 248–249. doi 10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, Y. and Chan, A.P., PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics, 2015, vol. 31, no. 16, pp. 2745–2747. doi 10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flicek, P., Amode, M.R., Barrell, D., et al., Ensembl 2012, Nucleic Acids Res., 2012, pp. D84–D90. doi 10.1093/nar/gkr991

    Google Scholar 

  30. Kumar, P.1., Henikoff, S., and Ng, P.C., Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc., 2009, vol. 4, no. 7, pp. 1073–1081. doi 10.1038/nprot. 2009.86

    Article  CAS  PubMed  Google Scholar 

  31. Uhlén, M., Fagerberg, L., Hallström, B.M., et al., Proteomics: tissue-based map of the human proteome, Science, 2015, vol. 347, no. 6220:1260419. doi 10.1126/science. 1260419

    Article  PubMed  Google Scholar 

  32. Stenson, P.D., Mort, M., Ball, E.V., et al., The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine, Hum. Genet., 2014, vol. 133, no. 1, pp. 1–9. doi 10.1007/s00439-013-1358-4

    Article  CAS  PubMed  Google Scholar 

  33. Bliznetz, E.A., Galkina, V.A., Matyushchenko, G.N., et al., Changes in the connexin 26 gene (GJB2) in Russian patients with hearing loss: results of long term molecular diagnostics of hereditary nonsyndromic hearing loss, Russ. J. Genet., 2012, vol. 48, no. 1, pp. 101–112.

    Article  CAS  Google Scholar 

  34. Danilenko, N., Merkulava, E., Siniauskaya, M., et al., Spectrum of genetic changes in patients with non-syndromic hearing impairment and extremely high carrier frequency of 35delG GJB2 mutation in Belarus, PLoS One, 2012, vol. 7, no. 5. e36354. doi 10.1371/journal. pone.0036354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pshennikova.

Additional information

Original Russian Text © V.G. Pshennikova, N.A. Barashkov, A.V. Solovyev, G.P. Romanov, E.E. Diakonov, N.N. Sazonov, I.V. Morozov, A.A. Bondar, O.L. Posukh, L.U. Dzhemileva, E.K. Khusnutdinova, M.I. Tomsky, S.A. Fedorova, 2017, published in Genetika, 2017, Vol. 53, No. 6, pp. 705–715.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshennikova, V.G., Barashkov, N.A., Solovyev, A.V. et al. Analysis of GJB6 (Сx30) and GJB3 (Сx31) genes in deaf patients with monoallelic mutations in GJB2 (Сx26) gene in the Sakha Republic (Yakutia). Russ J Genet 53, 688–697 (2017). https://doi.org/10.1134/S1022795417030103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417030103

Keywords

Navigation