Skip to main content
Log in

Flap endonuclease 1 and its role in eukaryotic DNA metabolism

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Flap endonuclease 1 (FEN1) is strongly specific for the substrate structure. The natural substrates of FEN1 are 5′-flap structures formed by three DNA strands one of which has an unpaired 5′ portion (a flap). Flap structures occur as intermediates in various processes of DNA metabolism such as DNA replication, Okazaki fragment maturation during replication of the lagging strand, and strand displacement DNA synthesis in base excision repair. In addition, FEN1 possesses 5′-exonuclease activity and gap endonuclease activity, discovered recently. FEN1 physically and functionally interacts with many DNA replication and repair proteins, including the proliferating cell nuclear antigen, helicase/nuclease Dna2, WRN, BLM, replication protein A, apurinic/apyrimidinic endonuclease 1, DNA polymerase β, poly(ADP-ribose) polymerase 1, high mobility group protein 1, human immunodeficiency virus integrase, transcriptional coactivator p300, chromatin proteins, cyclin-dependent kinases (Cdk1 and Cdk2), and cyclin A. FEN1 activity is important for maintaining the integrity of repetitive sequences in the genome. Recent data suggest a correlation between defects in hFEN1 activity and the development and progression of neurodegenerative diseases and cancer. Hence, FEN1 exerts a dramatic effect on cell growth and development and, consequently, attracts particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee B., Nguyen L.H., Barsky D., Fernandes M., Wilson D.M. III. 1999. Molecular interactions of human Exo1 with DNA. Nucleic Acids Res. 30, 942–949.

    Article  Google Scholar 

  2. Lieber M.R. 1997. The FEN1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays. 19, 233–240.

    Article  PubMed  CAS  Google Scholar 

  3. Shen B., Singh P., Liu R., Qiu J., Zheng L., Finger L.D., Alas S. 2005. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays. 27, 717–729.

    Article  PubMed  CAS  Google Scholar 

  4. Liu Y., Kao H.I., Bambara R.A. 2004. Flap endonuclease 1: A central component of DNA metabolism. Annu. Rev. Biochem. 73, 589–615.

    Article  PubMed  CAS  Google Scholar 

  5. Henneke G., Friedrich-Heineken E., Hübscher U. 2003. Flap endonuclease 1: A novel tumor suppressor protein. Trends Biochem. Sci. 28, 384–390.

    Article  PubMed  CAS  Google Scholar 

  6. Harrington J.J., Lieber M.R. 1994. The characterization of a mammalian structure-specific endonuclease. EMBO J. 13, 1235–1246.

    PubMed  CAS  Google Scholar 

  7. Negritto M.C., Qiu J., Ratay D.O., Shen B., Bailis, A.M. 2001. Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol. Cell. Biol. 21, 2349–2358.

    Article  PubMed  CAS  Google Scholar 

  8. Wu X., Li J., Hsieh C., Burgers P.M.J., Lieber M.R. 1996. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res. 24, 2036–2043.

    Article  PubMed  CAS  Google Scholar 

  9. Murante R.S., Rust L., Bambara R.A. 1995. Calf 5′ to 3′ exo/endonuclease must slide from a 5′ end of the substrate to perform structure-specific cleavage. J. Biol. Chem. 270, 30377–30383.

    Article  PubMed  CAS  Google Scholar 

  10. Harrington J.J., Lieber M.R. 1995. DNA structural elements required for FEN-1 binding. J. Biol. Chem. 270, 4503–4508.

    Article  PubMed  CAS  Google Scholar 

  11. Nazarkina Zh.K., Pyshnyi D.V., Pyshnaya I.A., Lavrik O.I., Khodyreva S.N. 2005. Use of modified flap structures for study of base excision repair proteins. Biokhimiya. 70, 1613–1622.

    Google Scholar 

  12. Erzberger J., Wilson D. III. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: New insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J. Mol. Biol. 290, 447–457.

  13. Takeshita M., Chang C.N., Johnson F., Will S., Grollman A.P. 1987. Oligodeoxynucleotides containing synthetic abasic sites: Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J. Biol. Chem. 262, 10171–10179.

    PubMed  CAS  Google Scholar 

  14. Nazarkina Zh.K., Petrousseva I.O, Safronov I.V, Lavrik O.I, Khodyreva S.N. 2003. Interaction of flap endonuclease-1 and replication protein A with photo-reactive intermediates of DNA repair. Biokhimiya. 68, 1138–1148.

    Google Scholar 

  15. Kaiser M.W., Lyamicheva N., Ma W., Miller C., Neri B., Fors L., Lyamichev V.I. 1999. A comparison of eubacterial and archaeal structure-specific 5′-exonucleases. J. Biol. Chem. 274, 21387–21394.

    Article  PubMed  CAS  Google Scholar 

  16. Kao H.I., Henricksen L.A., Liu Y., Bambara R.A. 2002. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J. Biol. Chem. 277, 14379–14389.

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich-Heineken E., Henneke G., Ferrari E., Hubscher U. 2003. The acetylatable lysines of human Fen1 are important for endo-and exonuclease activities. J. Mol. Biol. 328, 73–84.

    Article  PubMed  CAS  Google Scholar 

  18. Storici F., Henneke G., Ferrari E., Gordenin D., Hubscher U., Resnick M. 2002. The acetylatable lysines of human Fen1 are important for endo-and exonuclease activities. EMBO J. 21, 5930–5942.

    Article  PubMed  CAS  Google Scholar 

  19. Harrington C., Perrino F.W. 1995. The effects of cytosine arabinoside on RNA-primed DNA synthesis by DNA polymerase α-primase. J. Biol. Chem. 270, 26664–26669.

    Article  PubMed  CAS  Google Scholar 

  20. Khlimankov D.Yu., Rechkunova N.I., Kolpashchikov D.M., Khodyreva S.N., Lavrik O.I. 2001. Affinity labeling of flap endonuclease FEN-1 by photoreactive DNAs. Biokhimiya. 66, 905–912.

    Google Scholar 

  21. Zheng L., Zhou M., Chai Q., Parrish J., Xue D., Patrick S.M., Turchi J.J., Yannone S.M., Chen D., Shen B. 2005. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep. 6, 83–89.

    Article  PubMed  CAS  Google Scholar 

  22. Liu R., Qiu J., Finger L.D., Zheng L., Shen B. 2006. The DNA-protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations. Nucleic Acids Res. 34, 1772–1784.

    Article  PubMed  CAS  Google Scholar 

  23. Hohl M., Dunand-Sauthier I., Staresincic L., Jaquier-Gubler P., Thorel F., Modesti M., Clarkson S.G., Scharer O.D. 2007. Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res. 35, 3053–3063.

    Article  PubMed  CAS  Google Scholar 

  24. Hosfield D.J., Mol C.D., Shen B., Tainer J.A. 1998. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity. Cell. 95, 135–146.

    Article  PubMed  CAS  Google Scholar 

  25. Bornarth C.J., Ranalli T.A., Henrickesen L.A., Wahl A.F., Bambara R.A. 1999. Effect of flap modifications on human FEN1 cleavage. Biochemistry. 38, 13347–13354.

    Article  PubMed  CAS  Google Scholar 

  26. Hwang K.Y., Baek K., Kim H.Y., Cho Y. 1998. The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nature Struct. Biol. 5, 707–713.

    Article  PubMed  CAS  Google Scholar 

  27. Dervan J., Feng M., Patel D., Grasby J., Artymiuk P., Ceska T.A., Sayers J.R. 2002. Interactions of mutant and wild-type flap endonucleases with oligonucleotide substrates suggest an alternative model of DNA binding. Proc. Natl. Acad. Sci. USA. 99, 8542–8547.

    Article  PubMed  CAS  Google Scholar 

  28. Chapados B.R., Hosfeld D.J., Han S., Qiu J., Yelent B., Shen B., Tainer J.A. 2004. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell. 116, 39–50.

    Article  PubMed  CAS  Google Scholar 

  29. Friedrich-Heineken E., Hubscher U. 2004. The Fen1 extrahelical 3′-flap pocket is conserved from archaea to human and regulates DNA substrate specificity. Nucleic Acids Res. 32, 2520–2528.

    Article  PubMed  CAS  Google Scholar 

  30. Tom S., Henricksen L.A., Bambara R.A. 2000. Mechanism whereby proliferating cell nuclear antigen (PCNA) stimulates endonuclease-1. J. Biol. Chem. 275, 10498–10505.

    Article  PubMed  CAS  Google Scholar 

  31. Li X., Li J., Harrington J., Lieber M.R., Burgers P.M. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270, 22109–22112.

    Article  PubMed  CAS  Google Scholar 

  32. Chen J.J., Chen S., Saha P., Dutta A. 1996. p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA. 93, 11597–11602.

    Article  PubMed  CAS  Google Scholar 

  33. Budd M.E., Campbell J.L. 1997. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol. 17, 2136–2142.

    PubMed  CAS  Google Scholar 

  34. Stewart J.A., Campbell J.L., Bambara R.A. 2006. Flap endonuclease disengages Dna2 helicase/nuclease from Okazaki fragment flaps. J. Biol. Chem. 281, 38565–38572.

    Article  PubMed  CAS  Google Scholar 

  35. Brosh R.M.J., von Kobbe C., Sommers J.A., Karmakar P., Opresko P.L., Piotrowski J., Dianova I., Dianov G.L., Bohr V.A. 2001. Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J. 20, 5791–5801.

    Article  PubMed  CAS  Google Scholar 

  36. Brosh R.M.J., Driscoll H.C., Dianov G.L., Sommers J.A. 2002. Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry. 41, 12204–12216.

    Article  PubMed  CAS  Google Scholar 

  37. Sharma S., Sommers J.A., Wu L., Bohr V.A., Hickson I.D., Brosh R.M.J. 2004. Stimulation of flap endonuclease-1 by the Bloom’s syndrome protein. J. Biol. Chem. 279, 9847–9856.

    Article  PubMed  CAS  Google Scholar 

  38. Sharma S., Otterlei M., Sommers J.A., Driscoll H.C., Dianov G.L., Kao H.I., Bambara R.A., Brosh R.M.J. 2004. WRN helicase and FEN-1 form a complex upon replication arrest and together process branch migrating DNA structures associated with the replication fork. Mol. Biol. Cell. 15, 734–750.

    Article  PubMed  CAS  Google Scholar 

  39. Wang W., Bambara R.A. 2005. Human Bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure. J. Biol. Chem. 280, 5391–5399.

    Article  PubMed  CAS  Google Scholar 

  40. Bae S.H., Bae K.H., Kim J.A., Seo Y.S. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature. 412, 456–461.

    Article  PubMed  CAS  Google Scholar 

  41. Kao H.I., Veeraraghavan J., Polaczek P., Campbell J.L., Bambara R.A. 2004. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J. Biol. Chem. 279, 15014–15024.

    Article  PubMed  CAS  Google Scholar 

  42. Dianova I., Bohr V.A., Dianov G.L. 2001. Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry. 40, 12639–12644.

    Article  PubMed  CAS  Google Scholar 

  43. Ranalli T.A., Tom S., Bambara R.A. 2002. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J. Biol. Chem. 277, 41715–41724.

    Article  PubMed  CAS  Google Scholar 

  44. Prasad R., Dianov G.L., Bohr V.A., Wilson S.H. 2000. FEN1 stimulation of DNA polimerase β mediates an excision step in mammalian long patch base excision repair. J. Biol. Chem. 6, 4460–4466.

    Article  Google Scholar 

  45. Prasad R., Lavrik O.I., Kim S.J., Kedar P., Yang X.P., vande Berg B.J., Wilson S.H. 2001. DNA polymerase β-mediated long patch base excision repair: Poly(ADP-ribose) polymerase-1 stimulates strand displacement DNA synthesis. J. Biol. Chem. 35, 32411–32414.

    Article  Google Scholar 

  46. Sukhanova M.V., Khodyreva S.N., Lavrik O.I. 2006. Influence of poly(ADP-ribose) polymerase-1 and its apoptotoic 24-kDa fragment on repair of DNA duplexes in bovine testis nuclear extract. Biokhimiya. 71, 909–923.

    Google Scholar 

  47. Prasad R., Liu Y., Deterding L.J., Poltoratsky V.P., Kedar P.S., Horton J.K., Kanno S.-I., Asagoshi K., Hou E.W., Khodyreva S.N., Lavrik O.I., Tomer K.B., Yasui A., Wilson S.H. 2007. HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell. 27, 829–841.

    Article  PubMed  CAS  Google Scholar 

  48. Faust E.A., Triller H. 2002. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type 1 integrase: Possible role for flap endonuclease 1 in 5′-end processing of human immunodeficiency virus type 1 integration intermediates. J. Biomed. Sci. 9, 273–287.

    PubMed  CAS  Google Scholar 

  49. Hasan S., Stucki M., Hassa P.O., Imhof R., Gehrig P., Hunziker P., Hubscher U., Hottiger M.O. 2001. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol. Cell. 7, 1221–1231.

    Article  PubMed  CAS  Google Scholar 

  50. Huggins C.F., Chafin D.R., Aoyagi S., Henricksen L.A., Bambara R.A., Hayes J.J. 2002. Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol. Cell. 10, 1201–1211.

    Article  PubMed  CAS  Google Scholar 

  51. Henneke G., Koundrioukoff S., Hubscher U. 2003. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene. 22, 4301–4313.

    Article  PubMed  CAS  Google Scholar 

  52. Parrish J.Z., Yang C.L., Shen B.H., Xue D. 2003. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460.

    Article  PubMed  CAS  Google Scholar 

  53. Friedrich-Heineken E., Toueille M., Tannler B., Burki C., Ferrari E., Hottiger M.O., Hubscher U. 2005. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity. J. Mol. Biol. 353, 980–989.

    Article  PubMed  CAS  Google Scholar 

  54. Chai Q., Zheng L., Zhou M., Turchi J.J., Shen B. 2003. Interaction and stimulation of human FEN-1 nuclease activities by heterogeneous nuclear ribonucleoprotein A1 in R-segment processing during Okazaki fragment maturation. Biochemistry. 42, 15045–15052.

    Article  PubMed  CAS  Google Scholar 

  55. Gary R., Kim K., Cornelius H.L., Park M.S., Matsumoto Y. 1999. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J. Biol. Chem. 274, 4354–4363.

    Article  PubMed  CAS  Google Scholar 

  56. Gomes X.V., Burgers P.M. 2000. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 19, 381138–381121.

    Article  Google Scholar 

  57. Zheng L., Dai H., Qiu J., Huang Q., Shen B. 2007. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia and newborn lethality in mice. Mol. Cell. Biol. 27, 3176–3186.

    Article  PubMed  CAS  Google Scholar 

  58. Parrish J., Li L., Klotz K., Ledwich D., Wang X., Xue D. 2001. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature. 412, 90–94.

    Article  PubMed  CAS  Google Scholar 

  59. Parrish J.Z., Xue D. 2003. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol. Cell. 11, 987–996.

    Article  PubMed  CAS  Google Scholar 

  60. Murray J.M., Tavassoli M., al-Harithy R., Sheldrick K.S., Lehmann A.R., Carr A.M., Watts F.Z. 1994. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol. Cell. Biol. 14, 4878–4888.

    PubMed  CAS  Google Scholar 

  61. Reagan M.S., Pittenger C., Siede W., Friedberg E.C. 1995. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177, 364–371.

    PubMed  CAS  Google Scholar 

  62. Vallen E.A., Cross F.R. 1995. Mutations in RAD27 define a potential link between G1 cyclins and DNA replication. Mol. Cell. Biol. 15, 4291–4302.

    PubMed  CAS  Google Scholar 

  63. Otto C.J., Almqvist E., Hayden M.R., Andrew S.E. 2001. The “flap” endonuclease gene FEN1 is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clin. Genet. 59, 122–127.

    Article  PubMed  CAS  Google Scholar 

  64. Warbrick E., Coates P.J., Hall P.A. 1998. Fen1 expression: A novel marker for cell proliferation. J. Pathol. 186, 319–324.

    Article  PubMed  CAS  Google Scholar 

  65. Kim I., Lee M., Lee I., Shin S., Lee S. 2000. Gene expression of flap endonuclease-1 during cell proliferation and differentiation. Biochim. Biophys. Acta. 1496, 333–340.

    Article  PubMed  CAS  Google Scholar 

  66. Rumbaugh J.A., Henricksen L.A., DeMott M.S., Bambara R.A. 1999. Cleavage of substrates with mismatched nucleotides by flap endonuclease-1. J. Biol. Chem. 274, 14602–14608.

    Article  PubMed  CAS  Google Scholar 

  67. Ayyagari R., Gomes X.V., Gordenin D.A., Burgers P.M. 2003. Okazaki fragment maturation in yeast: 1. Distribution of functions between FEN1 and DNA2. J. Biol. Chem. 278, 1618–1625.

    Article  PubMed  CAS  Google Scholar 

  68. Sommers C.H., Miller E.J., Dujon B., Prakash S., Prakash L. 1995. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′-to 3′-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J. Biol. Chem. 270, 4193–4196.

    Article  PubMed  CAS  Google Scholar 

  69. Rossi M.L., Bambara R.A. 2006. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J. Biol. Chem. 281, 26051–26061.

    Article  PubMed  CAS  Google Scholar 

  70. Budd M.E., Choe W., Campbell J.L. 2000. The nuclease activity of the yeast DNA2 protein, which is related to the RecB-like nucleases, is essential in vivo. J. Biol. Chem. 275, 16518–16529.

    Article  PubMed  CAS  Google Scholar 

  71. Lee K.H., Kim D.W., Bae S.H., Kim J.A., Ryu G.H., Kwon Y.N., Kim K.A., Koo H.S., Seo Y.S. 2000. The endonuclease activity of the yeast Dna2 enzyme is essential in vivo. Nucleic Acids Res. 28, 2873–2881.

    Article  PubMed  CAS  Google Scholar 

  72. Kang H.Y., Choi E., Bae S.H., Lee K.H., Gim B.S., Kim H.D., Park C., MacNeill S.A., Seo Y.S. 2000. Genetic analyses of Schizosaccharomyces pombe dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism. Genetics. 155, 1055–1067.

    PubMed  CAS  Google Scholar 

  73. Kao H.I., Campbell J.L., Bambara R.A. 2004. Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J. Biol. Chem. 279, 50840–50849.

    Article  PubMed  CAS  Google Scholar 

  74. Bae S.H., Seo Y.S. 2000. Characterization of the enzymatic properties of the yeast dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing. J. Biol. Chem. 275, 38022–38031.

    Article  PubMed  CAS  Google Scholar 

  75. Rossi M.L., Purohit V., Brandt P.D., Bambara R.A. 2006. Lagging strand replication proteins in genome stability and DNA repair. Chem. Rev. 106, 453–473.

    Article  PubMed  CAS  Google Scholar 

  76. Bennett P. 2000. Demystified … microsatellites. Mol. Pathol. 53, 177–183.

    Article  PubMed  CAS  Google Scholar 

  77. Henricksen L.A., Tom S., Liu Y., Bambara R.A. 2000. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16 420–16 427.

    Article  CAS  Google Scholar 

  78. Liu Y., Zhang H., Veeraraghavan J., Bambara R.A., Freudenreich C.H. 2004. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24, 4049–4064.

    Article  PubMed  CAS  Google Scholar 

  79. Singh P., Zheng L., Chavez V., Qiu J., Shen B. 2007. Concerted action of exonuclease and gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n-and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. J. Biol. Chem. 282, 3465–3477.

    Article  PubMed  CAS  Google Scholar 

  80. Barnes C.J., Walf A.F., Shen B., Park M.S., Bambara R.A. 1996. Mechanism of tracking and cleavage of adduct-damaged DNA substrates by the mammalian 5′-to 3′-exonuclease/endonuclease RAD2 homologue 1 or flap endonuclease 1. J. Biol. Chem. 271, 29624–29631.

    Article  PubMed  CAS  Google Scholar 

  81. Yoon J.H., Swiderski P.M., Kaplan B.E., Takao M., Yasui A., Shen B., Pfeifer G.P. 1999. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry. 38, 4809–4817.

    Article  PubMed  CAS  Google Scholar 

  82. Aboussekhra A., Wood R.D. 1994. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 4, 212–220.

    Article  PubMed  CAS  Google Scholar 

  83. Tseng H.-M., Tomkinson A.E. 2004. Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J. Biol. Chem. 279, 47580–47588.

    Article  PubMed  CAS  Google Scholar 

  84. Schaarer O.D. 2003. Chemistry and biology of DNA repair. Angew. Chem. Int. Ed. 42, 2946–2974.

    Article  Google Scholar 

  85. Wu X., Wilson T.E., Lieber M.R. 1999. A role for FEN-1 in nonhomologous DNA end joining: The order of strand annealing and nucleolytic processing events. Proc. Natl. Acad. Sci. USA. 96, 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  86. Critchlow S.E., Jackson S.P. 1998. DNA end-joining: From yeast to man. Trends Biochem. Sci. 23, 394–398.

    Article  PubMed  CAS  Google Scholar 

  87. Wilson D.M. III, Thompson L.H. 1997. Life without DNA repair. Proc. Natl. Acad. Sci. USA. 94, 12754–12757.

    Article  PubMed  CAS  Google Scholar 

  88. DeMott M.S., Shen B.H., Park M.S., Bambara R.A., Zigman S. 1996. Human RAD2 homolog 1 5′-to 3′-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5′-terminal abasic lesion by endonuclease activity. J. Biol. Chem. 271, 30068–30076.

    Article  PubMed  CAS  Google Scholar 

  89. Klungland A., Lindahl T. 1997. Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348.

    Article  PubMed  CAS  Google Scholar 

  90. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271, 9573–9578.

    Article  PubMed  CAS  Google Scholar 

  91. Kim K., Biade S., Matsumoto Y. 1998. Involvement of flap endonuclease 1 in base excision DNA repair. J. Biol. Chem. 273, 8842–8848.

    Article  PubMed  CAS  Google Scholar 

  92. Stucki M., Pascucci B., Parlanti E., Fortini P., Wilson S.H., Hubscher U., Dogliotti E. 1998. Mammalian base excision repair by DNA polymerases delta and epsilon. Oncogene. 17, 835–843.

    Article  PubMed  CAS  Google Scholar 

  93. Tom S., Ranalli T.A., Podust V.N., Bambara R.A. 2001. Regulatory roles of p21 and apurinic/apyrimidinic endonuclease 1 in base excision repair. J. Biol. Chem. 276, 48781–48789.

    Article  PubMed  CAS  Google Scholar 

  94. Khodyreva S.N., Lavrik O.I. 2005. Photoaffinity labeling technique for studying DNA replication and DNA repair. Curr. Med. Chem. 12, 641–655.

    PubMed  CAS  Google Scholar 

  95. Lavrik O.I., Prasad R., Sobol R.W., Horton J.K., Ackerman E.J., Wilson S.H. 2001. Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. J. Biol. Chem. 27, 25541–25548.

    Article  Google Scholar 

  96. Liu Y., Beard W.A., Shock D.D., Prasad R., Hou E.W., Wilson S.H. 2005. DNA polymerase β and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. J. Biol. Chem. 280, 3665–3674.

    Article  PubMed  CAS  Google Scholar 

  97. Lebedeva N.A., Rechkunova N.I., Dezhurov S.V., Khodyreva S.N., Favre A., Blanco L., Lavrik O.I. 2005. Comparison of functional properties of mammalian DNA polymerase λ and DNA polymerase β in reactions of DNA synthesis related to DNA repair. Biochim. Biophys. Acta. 1751, 150–158.

    PubMed  CAS  Google Scholar 

  98. Zheng L., Dai H., Zhou M., Li M., Singh P., Qiu J., Tsark W., Huang Q., Kernstine K., Zhang X., Lin D., Shen B. 2007. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat. Medicine. 13, 812–819.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. K. Nazarkina.

Additional information

Original Russian Text © Zh.K. Nazarkina, O.I. Lavrik, S.N. Khodyreva, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 3, pp. 405–421.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarkina, Z.K., Lavrik, O.I. & Khodyreva, S.N. Flap endonuclease 1 and its role in eukaryotic DNA metabolism. Mol Biol 42, 357–370 (2008). https://doi.org/10.1134/S0026893308030035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308030035

Key words

Navigation