Skip to main content
Log in

Intraspecific variation of thermal reaction norms for development in insects: New approaches and prospects

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The main parameters (thermal constants) characterizing the effects of constant temperatures on the duration and rate of development in ectotherms are considered. The advantages and drawbacks of the linear and nonlinear models describing the dependence of the development rate on temperature are discussed. The main patterns of interspecific variation of thermal constants in insects are described. The development of new ideas in the study of intraspecific variation of thermal reaction norms for development in insects is examined. The discrepancies in the data and their interpretation in this field are shown to result mostly from using the traditional methods of determining thermal constants. According to this method, the development rates calculated as reciprocals of the mean development times at each experimental temperature are used for regression analysis. The standard errors calculated according to this method are usually too large. Instead, a fundamentally new method is employed by the authors, according to which the individual development rates calculated for each individual are used for regression analysis of the reciprocals of the mean development times. This method reduces the standard errors of thermal constants by about an order and reveals significant differences between populations and other groups of insects. New data on intraspecific variation of the thermal reaction norms for development in Myrmica ants, the linden bug Pyrrhocoris apterus, and Calliphora blowflies are briefly described and discussed. The possible adaptive significance of these forms of intraspecific variation is discussed. The prospects of research in this new field are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, D., “Temperature and Organism Size—a Biological Law for Ectotherms?” Adv. Ecol. Res. 25, 1–58 (1994).

    Article  Google Scholar 

  2. Balashov, S.V. and Kipyatkov, V.E., “First Demonstration of the Possibility of Changing the Thermal Reaction Norms for Insect Development by Artificial Selection for Rapid or Slow Development, by the Example of the Linden Bug Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae),” Zh. Evol. Biokhim. Fiziol. 44(2), 162–167 (2008a).

    CAS  PubMed  Google Scholar 

  3. Balashov, S.V. and Kipyatkov, V.E., “Studies of Intrapopulation Variability of Duration and Thermal Reaction Norms for Development in the Linden Bug Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae),” Zh. Evol. Biokhim. Fiziol. 44(6), 582–590 (2008b).

    CAS  PubMed  Google Scholar 

  4. Balashov, S.V., Lopatina, E.B., Kipyatkov, V.E., “Latitudinal Variation of Duration and Thermal Requirements of Development in Linden-Bug, Pyrrhocoris apterus (Insecta, Heteroptera, Pyrrhocoridae),” in Int. Symp. of Environmental Physiology of Ectotherms and Plants, July 11–16, 2005, Roskilde, Denmark (Roskilde Univ., 2005), p. 13.

  5. Balashov, S.V., Lopatina, E.B. and Kipyatkov, V.E., “Variability of Duration and Thermolability of Egg and Nymph Development in Two Consecutive Generations of the Linden Bug Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae),” Vestnik SPbGU Ser. 3, No. 2, 11–21 (2007).

  6. Bělehrádek, J., Temperature and Living Matter (Protoplasma Monograph, Vol. 8) (Borntraeger, Berlin, 1935).

    Google Scholar 

  7. Benson, E.P., Zungoli, P.A., and Smith, L.E., “Comparison of Developmental Rates of Two Separate Populations of Periplaneta fuliginosa (Dictyoptera: Blattidae) and Equations Describing Development, Preoviposition, Oviposition,” Env. Entomol. 23, 979–986 (1994).

    Google Scholar 

  8. Blunck, H., “Die Entwicklung von Dytiscus marginatus L. vom Ei bis zur Imago,” Zeitschr. Wiss. Zool. 111, 76–151 (1914).

    Google Scholar 

  9. Blunck, H., “Die Entwicklung von Dytiscus marginatus L. vom Ei bis zur Imago. II Teil. Die Metamorphose,” Zeitschr. Wiss. Zool. 121, 279–321 (1923).

    Google Scholar 

  10. Brenner, R.J., Cupp, E.W., and Bernardo, M.J., “Growth and Development of Geographic and Crossbred Strains of Colonized Simulium decorum (Diptera: Simuliidae),” Can. J. Zool. 59, 2072–2079 (1981).

    Article  Google Scholar 

  11. Campbell, A., Fraser, B.D., Gilbert, N., et al., “Temperature Requirements of Some Aphids and Their Parasites,” J. Appl. Ecol. 11, 431–438 (1974).

    Article  Google Scholar 

  12. Danilevsky, A.S., “Seasonal Rhythms and Intraspecific Geographic Differentiation in Insects,” Vestnik LGU Ser. Biol., No. 21, 93–105 (1957).

  13. Danilevsky, A.S., Photoperiodism and Seasonal Development of Insects (Leningrad State Univ., Leningrad, 1961) [in Russian].

    Google Scholar 

  14. Danks, H.V., Insect Dormancy: An Ecological Perspective (Biological Survey of Canada, Ottawa, 1987).

    Google Scholar 

  15. Davidson, J., “On the Relationship between Temperature and Rate of Development of Insects at Constant Temperatures,” J. Anim. Ecol. 13, 26–38 (1944).

    Article  Google Scholar 

  16. De Wilde, J., “Dévelopment embryonnaire et postembryonnaire du Doryphore (Leptinotarsa decemlineata) en function du temperature,” in Proc. VIII Int. Congr. of Entomology, Stockholm, 1948 (Univ. of Stockholm, 1948), pp. 310–321.

  17. Druzhelyubova, T.S., “The Effect of Light and Temperature on Development of Geographic Populations of the Greasy Cutworm Agrotis ypsilon (Lepidoptera, Noctuidae),” Entomol. Obozr. 55(2), 277–285 (1976).

    Google Scholar 

  18. Elmes, G.W., Wardlaw, J.C., Nielsen, M.G., et al., “Site Latitude Influences on Respiration Rate, Fat Content and the Ability of Worker Ants to Rear Larvae: A Comparison of Myrmica rubra (Hymenoptera: Formicidae) Populations over Their European Range,” Eur. J. Entomol. 96, 117–124 (1999).

    Google Scholar 

  19. Goryshin, N.I., Equipment for Ecological Studies in Entomology: Measurement and Control of Physical Factors (Leningrad State Univ., Leningrad, 1966) [in Russian].

    Google Scholar 

  20. Goryshin, N.I., Volkovich, T.A., Saulich, A.Kh., et al., “The Role of Temperature and Photoperiod in the Development Control of the Spined Soldier Bug Podisus maculiventris (Hemiptera, Pentatomidae),” Zool. Zh. 67(8), 1148–1161 (1988).

    Google Scholar 

  21. Groeters, F.R., “Geographic Conservatism of Development Rate in the Milkweed-Oleander Aphid, Aphis nerii,” Acta Oecol. 13, 649–661 (1992).

    Google Scholar 

  22. Heron, R.J., “Differences in Post Diapause Development among Geographically Distinct Populations of the Larch Sawfly, Pristiphora erichsonii (Hymenoptera: Tenthredinidae),” Can. Entomol. 104, 1307–1312 (1972).

    Article  Google Scholar 

  23. Honěk, A., “The Relationship between Thermal Constants for Insect Development: a Verification,” Acta Soc. Zool. Bohem. 60, 115–152 (1996).

    Google Scholar 

  24. Honěk, A., “Geographical Variation in Thermal Requirements for Insect Development,” Eur. J. Entomol. 93, 303–312 (1996).

    Google Scholar 

  25. Honěk, A. and Kocourek, F., “Thermal Requirements for Development of Aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): Some General Trends,” Oecologia 76, 455–460 (1988).

    Google Scholar 

  26. Honěk, A. and Kocourek, F., “Temperature and Development Time in Insects: a General Relationship between Thermal Constants,” Zool. Jb. Syst. 117, 401–439 (1990).

    Google Scholar 

  27. Jarošik, V., Honěk, A., and Dixon, A.F.G., “Developmental Rate Isomorphy in Insects and Mites,” Amer. Naturalist 160, 497–510 (2002).

    Article  Google Scholar 

  28. Jarošik, V., Polechova, J., Dixon, A.F.G., and Honěk, A., “Developmental Isomorphy in Ladybirds (Coleoptera: Coccinellidae),” in Proc. 8th Int. Symp. on Ecology of Aphidophaga: Biology, Ecology and Behavior of Aphidophagous Insects (Univ. of Azores, Ponta Delgada, 2003), pp. 55–64.

    Google Scholar 

  29. Kipyatkov, V.E. and Lopatina, E.B., “Reaction Norm in Response to Temperature May Change to Adapt Rapid Brood Development to Boreal and Subarctic Climates in Myrmica Ants (Hymenoptera: Formicidae),” Eur. J. Entomol. 99, 197–208 (2002).

    Google Scholar 

  30. Kipyatkov, V. and Lopatina, E., “Latitudinal Variation of Seasonal Cycle Patterns May Affect Colony and Body Size in Myrmica Ants,” in Proc. XV IUSSI Congress, Washington DC, USA, 30 July–4 August 2006 (Washington, 2006), p. 32.

  31. Kipyatkov, V.E. and Lopatina, E.B., “Adaptive Changes in the Seasonal Cycle Structure along the Latitude Gradient May Affect the Colony and Body Size in Myrmica Ants (Hymenoptera, Formicidae),” in Problems and Prospects of General Entomology. Abstracts of Papers, XIII Congr. of the Russian Entomological Society, Krasnodar, 9–15 September, 2007 (Krasnodar, 2007), pp. 146–147 [in Russian].

  32. Kipyatkov, V.E., Lopatina, E.B., Imamgaliev, A.A., and Shirokova, L.A., “The Effect of Temperature on the First Brood Rearing by Foundresses of Lasius niger L. (Hymenoptera, Formicidae): Latitudinal Variation of the Reaction Norm,” Zh. Evol. Biokhim. Fiziol. 40(2), 134–141 (2004).

    Google Scholar 

  33. Kipyatkov, V.E., Lopatina, E.B., and Imamgaliev, A.A., “Climatic Adaptation via Latitudinal Variation of Thermal Reaction Norms for Brood Development in Ants of the Genus Myrmica,” in Int. Symp. on Environmental Physiology of Ectotherms and Plants, July 11–16, 2005, Roskilde, Denmark (Roskilde Univ., 2005), pp. 1–2.

  34. Kipyatkov, V., Lopatina, E., and Imamgaliev, A., “Duration and Thermal Reaction Norms of Development are Significantly Different in Winter and Summer Brood Pupae of the Ants Myrmica rubra Linnaeus, 1758 and M. ruginodis Nylander, 1846 (Hymenoptera, Formicidae),” Myrmecol. News 7, 69–76 (2005).

    Google Scholar 

  35. Kipyatkov, V.E., Lopatina, E.B., and Imamgaliev, A.A., “Ants of the Genus Myrmica Adapt to Local Climates by Changing the Duration and the Thermal Reaction Norms of Their Brood Development,” in Proc. 3rd Europ. Congr. on Social Insects, St. Petersburg, Russia, 22–27 August 2005 (St. Petersburg, 2005), p. 152.

  36. Kozhanchikov, I.V., “On the Thermal Optimum of Life. VIII. On the Lability of Insect Development in Relation to Thermal Influences,” Zool. Zh. 25(1), 27–35 (1946).

    Google Scholar 

  37. Kozhanchikov, I.V., Methods of Studying Insect Ecology (Vysshaya Shkola, Moscow, 1961) [in Russian].

    Google Scholar 

  38. Lamb, R.J., “Developmental Rate of Acyrthosiphon pisum (Homoptera: Aphididae) at Low Temperatures: Implications for Estimating Rate Parameters for Insects,” Env. Entomol. 21, 10–19 (1992).

    Google Scholar 

  39. Lamb, R.J., MacKay, P.A., and Gerber, G.H., “Are Development and Growth of Pea Aphids, Acyrthosiphon pisum, in North America Adapted to Local Temperatures?” Oecologia 72, 170–177 (1987).

    Article  Google Scholar 

  40. Lopatina, E.B. and Kipyatkov, V.E., “Comparative Study of Temperature Dependence of Development in Ants,” in Book of Abstracts, Proc. VI Eur. Congr. of Entomology, Ceske Budejovice, August 23–29, 1998 (Ceske Budejovice, 1998), pp. 224–225.

  41. Lopatina, E. and Kipyatkov, V., “Variation of Thermal Requirements for Development, Habitat Preferences and Nest Temperature along a Latitudinal Cline in Myrmica Ants,” in Proc. XV IUSSI Congress, Washington DC, USA, 30 July–4 August 2006 (Washington, 2006), p. 58.

  42. Lopatina, E.B. and Kipyatkov, V.E., “Intraspecific Latitudinal Variation of Thermal Reaction Norms, Microhabitat Preferences, and Nest Temperature in Myrmica Ants (Hymenoptera, Formicidae),” in Problems and Prospects of General Entomology. Abstracts of Papers, XIII Congr. of the Russian Entomological Society, Krasnodar, 9–15 September, 2007 (Krasnodar, 2007), pp. 201–202 [in Russian].

  43. Lopatina, E.B., Balashov, S.V., and Kipyatkov, V.E., “First Demonstration of the Influence of Photoperiod on the Thermal Requirements for Development in Insects and in Particular the Linden-Bug, Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae),” Eur. J. Entomol. 104, 23–31 (2007).

    Google Scholar 

  44. Lopatina, E.B., Imamgaliev, A.A., and Kipyatkov, V.E., “Latitudinal Variability of Duration and Thermal Lability of Pupal Development in Three Ant Species of the Genus Myrmica (Hymenoptera, Formicidae),” Entomol. Obozr. 81(2), 265–275 (2002) [Entomol. Review 82 (8), 938–946 (2002)].

    Google Scholar 

  45. Ludwig, D., “The Effect of Temperatures on the Development of an Insect (Popilia japonica Newman),” Physiol. Zoology 1, 358–389 (1928).

    Google Scholar 

  46. Marshakov, V.G., “Effect of Constant and Variable Temperatures on Duration and Rates of Insect Development,” Entomol. Obozr. 63(4), 649–657 (1984).

    Google Scholar 

  47. Mednikov, B.M., “Evolutionary Aspects of Thermolability of Insect Development,” Uspekhi Sovrem. Biol. 61(2), 247–259 (1966).

    CAS  Google Scholar 

  48. Mednikov, B.M., “Temperature as a Development Factor,” in Environment and the Developing Organism (Moscow, 1977), pp. 7–52 [in Russian].

  49. Mogi, M., “Temperature and Photoperiod Effects on Larval and Ovarial Development of New Zealand Strains of Culex quinquefasciatus (Diptera: Culicidae),” Ann. Entomol. Soc. Amer. 85, 58–66 (1992).

    Google Scholar 

  50. Morris, R.F. and Fulton, W.C., “Heritability of Diapause Intensity in Hyphantria cunea and Correlated Fitness Responses,” Can. Ent. 102, 927–938 (1970).

    Article  Google Scholar 

  51. Nechols, J.R., Tauber, M.J., and Tauber, C.A., “Geographical Variability in Ecophysiological Traits Controlling Dormancy in Chrysopa oculata (Neuroptera: Chrysopidae),” J. Insect Physiol. 33, 627–633 (1987).

    Article  Google Scholar 

  52. Nechols, J.R., Tauber, M.J., Tauber, C.A., and Helgesen, R.G., “Environmental Regulation of Dormancy in the Alfalfa Blotch Leafminer, Agromyza frontella (Diptera: Agromyzidae),” Ann. Ent. Soc. Amer. 76, 116–119 (1983).

    Google Scholar 

  53. Nesin, A.P. and Kipyatkov, V.E., “Intraspecific Variability and Stability of Thermal Reaction Norms for Pupal Development in the Blowflies Calliphora vicina R.-D. and C. vomitoria L. (Diptera, Calliphoridae),” Problems and Prospects of General Entomology. Abstracts of Papers, XIII Congr. of the Russian Entomological Society, Krasnodar, 9–15 September, 2007 (Krasnodar, 2007), pp. 251–252 [in Russian].

  54. Nicholson, M.D., “On Expressing the Mean of Rounded Data,” Biometrics 35, 873–874 (1979).

    Article  Google Scholar 

  55. Nielsen, M.G., Elmes, G.W., and Kipyatkov, V.E., “Respiratory Q10 Varies between Populations of Two Species of Myrmica Ants According to the Latitude of Their Sites,” J. Insect Physiol. 45, 559–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Nylin, S., “Seasonal Plasticity and Life-Cycle Adaptations in Butterflies,” in Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Ed. by H.V. Danks (Kluwer Acad. Publ., Dordrecht, 1994), pp. 41–67.

    Google Scholar 

  57. Obrycki, J.J. and Tauber, M.J., “Thermal Requirements for Development of Hippodamia convergens (Coleoptera: Coccinellidae),” Ann. Entomol. Soc. Amer. 75, 678–683 (1982).

    Google Scholar 

  58. Padua, L.E.M., Parra, J.R.P., and Rossi, M.M., “Relationship between Nutritional and Thermal Requirements of Trichogramma pretiosum Riley, 1879, Reared on Different Hosts,” in Proc. XX Int. Congr. of Entomology, Firenze, Italy, August 25–31, 1996 (Firenza, 1996), p. 329.

  59. Pruess, K.P., “Degree-Day Methods for Pest Management,” Env. Entomol. 12, 613–619 (1983).

    Google Scholar 

  60. Ratte, H.T., “Temperature and Insect Development,” in Environmental Physiology and Biochemistry of Insects. Ed. by K.H. Hoffmann (Springer Verlag, Berlin etc., 1985), pp. 33–66.

    Google Scholar 

  61. Roff, D.A., “Optimizing Development Time in a Seasonal Environment: the ‘Ups and Downs’ of Clinal Variation,” Oecologia 45, 202–208 (1980).

    Article  Google Scholar 

  62. Roff, D.A., The Evolution of Life Histories; Theory and Analysis (Chapman / Hall, New York, 1992).

    Google Scholar 

  63. Saska, P. and Honěk, A., “Temperature and Development of Central European Species of Amara (Coleoptera: Carabidae),” Eur. J. Entomol. 100, 509–515 (2003).

    Google Scholar 

  64. Saulich, A.Kh., “The Rule of the Sum of Effective Temperatures: Possible Applications and Drawbacks,” Entomol. Obozr. 78(2), 257–274 (1999).

    Google Scholar 

  65. Saulich, A.Kh. and Volkovich, T.A., Ecology of Photoperiodism in Insects (SPbGU, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  66. Shaffer, P.L., “Prediction of Variation in Development Period of Insects and Mites Reared at Constant Temperatures,” Env. Entomol. 12, 1012–1019 (1983).

    Google Scholar 

  67. Sokal, R.R. and Rohlf, F.J., Biometry: the Principles and Practice of Statistics in Biological Research (W.H. Freeman and Co., New York, 1995).

    Google Scholar 

  68. Stearns, S.C., The Evolution of Life Histories (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  69. Tauber, C.A., Tauber, M.J., and Nechols, J.R., “Thermal Requirements for Development in Chrysopa oculata: a Geographically Stable Trait,” Ecology 68, 1479–1487 (1987).

    Article  Google Scholar 

  70. Taylor, F., “Ecology and Evolution of Physiological Time in Insects,” Amer. Nat. 117, 1–23 (1981).

    Article  Google Scholar 

  71. Trudgill, D.L., “Why Do Tropical Poikilothermic Organisms Tend to Have Higher Threshold Temperature for Development than Temperate Ones?” Functional Ecology 9, 136–137 (1995).

    Google Scholar 

  72. Trudgill, D.L., Honěk, A., Li, D., and van Straalen, N.M., “Thermal Time—Concepts and Utility,” Ann. Appl. Biol. 146, 1–14 (2005).

    Article  Google Scholar 

  73. Trudgill, D.L. and Perry, J.N., “Thermal Time and Ecological Strategies—a Unifying Hypothesis,” Ann. Appl. Biol. 125, 521–532 (1994).

    Article  Google Scholar 

  74. Turnock, W.J., Jones, T.H., and Reader, P.M., “Effects of Cold Stress during Diapause on the Survival and Development of Delia radicum (Diptera: Anthomyiidae) in England,” Oecologia 67, 506–510 (1985).

    Article  Google Scholar 

  75. Turnock, W.J., Lamb, R.J., and Bodnaryk, R.P., “Effects of Cold Stress during Pupal Diapause on the Survival and Development of Mamestra configurata (Lepidoptera: Noctuidae),” Oecologia 56, 185–192 (1983).

    Article  Google Scholar 

  76. Vinberg, G.G., “Vant-Hoff’s Thermal Coefficient and Arrhenius’ Equation in Biology,” Zh. Obshchei Biol. 44(1), 31–42 (1983).

    Google Scholar 

  77. Wagner, T.L., Wu, H., Sharpe, P.J.H., et al., “Modeling Insect Development Rates: a Literature Review and Application of a Biophysical Model,” Ann. Entomol. Soc. Amer. 77, 208–225 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.E. Kipyatkov, E.B. Lopatina, 2010, published in Entomologicheskoe Obozrenie, 2010, Vol. 89, No. 1, pp. 33–61.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipyatkov, V.E., Lopatina, E.B. Intraspecific variation of thermal reaction norms for development in insects: New approaches and prospects. Entmol. Rev. 90, 163–184 (2010). https://doi.org/10.1134/S0013873810020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873810020041

Keywords

Navigation