Skip to main content
Log in

Heavy metal ions affect the activity of DNA glycosylases of the Fpg family

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Prokaryotic enzymes formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei) and their eukaryotic homologs NEIL1, NEIL2, and NEIL3 define the Fpg family of DNA glycosylases, which initiate the process of repair of oxidized DNA bases. The repair of oxidative DNA lesions is known to be impaired in vivo in the presence of ions of some heavy metals. We have studied the effect of salts of several alkaline earth and transition metals on the activity of Fpg-family DNA glycosylases in the reaction of excision of 5,6-dihydrouracil, a typical DNA oxidation product. The reaction catalyzed by NEIL1 was characterized by values K m = 150 nM and k cat = 1.2 min−1, which were in the range of these constants for excision of other damaged bases by this enzyme. NEIL1 was inhibited by Al3+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+, and Fe2+ in Tris-HCl buffer and by Cd2+, Zn2+, Cu2+, and Fe2+ in potassium phosphate buffer. Fpg and Nei, the prokaryotic homologs of NEIL1, were inhibited by the same metal ions as NEIL1. The values of I50 for NEIL1 inhibition were 7 µM for Cd2+, 16 µM for Zn2+, and 400 µM for Cu2+. The inhibition of NEIL1 by Cd2+, Zn2+, and Cu2+ was at least partly due to the formation of metal-DNA complexes. In the case of Cd2+ and Cu2+, which preferentially bind to DNA bases rather than phosphates, the presence of metal ions caused the enzyme to lose the ability for preferential binding to damaged DNA. Therefore, the inhibition of NEIL1 activity in removal of oxidative lesions by heavy metal ions may be a reason for their comutagenicity under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

apurine-apyrimidine

DHU:

5,6-dihy-drouracil

ODN:

oligodeoxyribonucleotide

THF:

(3-hydroxy-tetrahydrofuran-2-yl)methyl phosphate

References

  1. Zenkov, N. K., Lankin, V. Z., and Menshchikova, E. B. (2001) Oxidative Stress: Biochemical and Pathophysiological Aspects [in Russian], MAIK Nauka/Interperiodika, Moscow.

    Google Scholar 

  2. Anisimov, V. N. (2003) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, St. Petersburg.

    Google Scholar 

  3. Lindahl, T. (1993) Nature, 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  4. Von Sonntag, C. (2006) Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective, Springer, Berlin-Heidelberg.

    Google Scholar 

  5. Salnikow, K., and Zhitkovich, A. (2008) Chem. Res. Toxicol., 21, 28–44.

    Article  PubMed  Google Scholar 

  6. Beyersmann, D., and Hartwig, A. (2008) Arch. Toxicol., 82, 493–512.

    Article  PubMed  CAS  Google Scholar 

  7. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, ASM Press, Washington.

    Google Scholar 

  8. Hartwig, A., and Beyersmann, D. (1989) Biol. Trace Elem. Res., 21, 359–365.

    Article  PubMed  CAS  Google Scholar 

  9. Hirano, T., Yamaguchi, Y., and Kasai, H. (1997) Toxicol. Appl. Pharmacol., 147, 9–14.

    Article  PubMed  CAS  Google Scholar 

  10. Asmuss, M., Mullenders, L. H. F., and Hartwig, A. (2000) Toxicol. Lett., 112/113, 227–231.

    Article  Google Scholar 

  11. Zharkov, D. O., and Rosenquist, T. A. (2002) DNA Repair, 1, 661–670.

    Article  PubMed  CAS  Google Scholar 

  12. Blessing, H., Kraus, S., Heindl, P., Bal, W., and Hartwig, A. (2004) Eur. J. Biochem., 271, 3190–3199.

    Article  PubMed  CAS  Google Scholar 

  13. Zharkov, D. O. (2007) Mol. Biol. (Moscow), 41, 772–786.

    CAS  Google Scholar 

  14. Sidorenko, V. S., and Zharkov, D. O. (2008) Mol. Biol. (Moscow), 42, 891–903.

    CAS  Google Scholar 

  15. Hitomi, K., Iwai, S., and Tainer, J. A. (2007) DNA Repair, 6, 410–428.

    Article  PubMed  CAS  Google Scholar 

  16. Zharkov, D. O., Shoham, G., and Grollman, A. P. (2003) DNA Repair, 2, 839–862.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) DNA Repair, 2, 581–591.

    Article  PubMed  CAS  Google Scholar 

  18. Vartanian, V., Lowell, B., Minko, I. G., Wood, T. G., Ceci, J. D., George, S., Ballinger, S. W., Corless, C. L., McCullough, A. K., and Lloyd, R. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  19. O’Connor, T. R., Graves, R. J., de Murcia, G., Castaing, B., and Laval, J. (1993) J. Biol. Chem., 268, 9063–9070.

    PubMed  Google Scholar 

  20. Doublie, S., Bandaru, V., Bond, J. P., and Wallace, S. S. (2004) Proc. Natl. Acad. Sci. USA, 101, 10284–10289.

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

    Google Scholar 

  22. Rieger, R. A., McTigue, M. M., Kycia, J. H., Gerchman, S. E., Grollman, A. P., and Iden, C. R. (2000) J. Am. Soc. Mass Spectrom., 11, 505–515.

    Article  PubMed  CAS  Google Scholar 

  23. Gilboa, R., Zharkov, D. O., Golan, G., Fernandes, A. S., Gerchman, S. E., Matz, E., Kycia, J. H., Grollman, A. P., and Shoham, G. (2002) J. Biol. Chem., 277, 19811–19816.

    Article  PubMed  CAS  Google Scholar 

  24. Dizdaroglu, M., Laval, J., and Boiteux, S. (1993) Biochemistry, 32, 12105–12111.

    Article  PubMed  CAS  Google Scholar 

  25. Ide, H., Petrullo, L. A., Hatahet, Z., and Wallace, S. S. (1991) J. Biol. Chem., 266, 1469–1477.

    PubMed  CAS  Google Scholar 

  26. Kumar, S., Lamarche, B. J., and Tsai, M.-D. (2007) Biochemistry, 46, 3814–3825.

    Article  PubMed  CAS  Google Scholar 

  27. Zaika, E. I., Perlow, R. A., Matz, E., Broyde, S., Gilboa, R., Grollman, A. P., and Zharkov, D. O. (2004) J. Biol. Chem., 279, 4849–4861.

    Article  PubMed  CAS  Google Scholar 

  28. Kropachev, K. Y., Zharkov, D. O., and Grollman, A. P. (2006) Biochemistry, 45, 12039–12049.

    Article  PubMed  CAS  Google Scholar 

  29. Jaruga, P., Birincioglu, M., Rosenquist, T. A., and Dizdaroglu, M. (2004) Biochemistry, 43, 15909–15914.

    Article  PubMed  CAS  Google Scholar 

  30. Ishchenko, A. A., Vasilenko, N. L., Sinitsina, O. I., Yamkovoy, V. I., Fedorova, O. S., Douglas, K. T., and Nevinsky, G. A. (2002) Biochemistry, 41, 7540–7548.

    Article  PubMed  CAS  Google Scholar 

  31. Sidorenko, V. S., Mechetin, G. V., Nevinsky, G. A., and Zharkov, D. O. (2008) FEBS J., 275, 3747–3760.

    Article  PubMed  CAS  Google Scholar 

  32. Asmuss, M., Mullenders, L. H. F., Eker, A., and Hartwig, A. (2000) Carcinogenesis, 21, 2097–2104.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, D., Hatahet, Z., Blaisdell, J. O., Melamede, R. J., and Wallace, S. S. (1997) J. Bacteriol., 179, 3773–3782.

    PubMed  CAS  Google Scholar 

  34. Zharkov, D. O., Golan, G., Gilboa, R., Fernandes, A. S., Gerchman, S. E., Kycia, J. H., Rieger, R. A., Grollman, A. P., and Shoham, G. (2002) EMBO J., 21, 789–800.

    Article  PubMed  CAS  Google Scholar 

  35. Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., Dizdaroglu, M., and Mitra, S. (2002) Proc. Natl. Acad. Sci. USA, 99, 3523–3528.

    Article  PubMed  CAS  Google Scholar 

  36. Ivanisenko, V. A., Debelov, V. A., Pintus, S. S., Matsokin, A. M., Nikolaev, S. V., Grigorovich, D. A., and Kolchanov, N. A. (2002) in Proc. Third Int. Conf. on Bioinformatics of Genome Regulation and Structure, Novosibirsk, pp. 150–153.

  37. Soler-Lopez, M., Malinina, L., Tereshko, V., Zarytova, V., and Subirana, J. A. (2002) J. Biol. Inorg. Chem., 7, 533–538.

    Article  PubMed  CAS  Google Scholar 

  38. Labiuk, S. L., Delbaere, L. T. J., and Lee, J. S. (2003) J. Biol. Inorg. Chem., 8, 715–720.

    Article  PubMed  CAS  Google Scholar 

  39. Eichhorn, G. L., and Shin, Y. A. (1968) J. Am. Chem. Soc., 90, 7323–7328.

    Article  PubMed  CAS  Google Scholar 

  40. Duguid, J., Bloomfield, V. A., Benevides, J., and Thomas, G. J., Jr. (1993) Biophys. J., 65, 1916–1928.

    Article  PubMed  CAS  Google Scholar 

  41. Vasilescu, D., Ansiss, S., and Mallet, G. (1993) J. Biol. Phys., 19, 199–209.

    Article  Google Scholar 

  42. Bruner, S. D., Norman, D. P. G., and Verdine, G. L. (2000) Nature, 403, 859–866.

    Article  PubMed  CAS  Google Scholar 

  43. Klaassen, C. D., Liu, J., and Choudhuri, S. (1999) Annu. Rev. Pharmacol. Toxicol., 39, 267–294.

    Article  PubMed  CAS  Google Scholar 

  44. Thornalley, P. J., and Vasak, M. (1985) Biochim. Biophys. Acta, 827, 36–44.

    PubMed  CAS  Google Scholar 

  45. Tamai, K. T., Gralla, E. B., Ellerby, L. M., Valentine, J. S., and Thiele, D. J. (1993) Proc. Natl. Acad. Sci. USA, 90, 8013–8017.

    Article  PubMed  CAS  Google Scholar 

  46. Skal’ny, A. V. (2004) Chemical Elements in Human Physiology and Ecology [in Russian], Mir, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Zharkov.

Additional information

Original Russian Text © I. R. Grin, P. G. Konorovsky, G. A. Nevinsky, D. O. Zharkov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 11, pp. 1539–1547.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grin, I.R., Konorovsky, P.G., Nevinsky, G.A. et al. Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. Biochemistry Moscow 74, 1253–1259 (2009). https://doi.org/10.1134/S000629790911011X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790911011X

Key words

Navigation