Skip to main content
Log in

Alterations in enamel remineralization in vitro induced by blue light

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Blue light, especially from LED devices, is a very frequently used tool in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the effects of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on remineralization of dental enamel. Artificial lesions were formed in bovine dental enamel blocks by immersing the samples in undersaturated acetate buffer. The lesions were irradiated with blue LED (455 nm, 1.38 W/cm2, 13.75 J/cm2, and 10 s) and remineralization was induced by pH-cycling process. Cross-sectional hardness was used to asses mineral changes after remineralization. Non-irradiated enamel lesions presented higher mineral content than irradiated ones. Furthermore, the mineral content of irradiated group was not significantly different from the lesion samples that were not submitted to the remineralization process. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Arends and J. M. ten Cate, J. Cryst. Growth 53, 135 (1981).

    Article  ADS  Google Scholar 

  2. O. Fejerskov, Caries Res. 38, 182 (2004).

    Article  Google Scholar 

  3. J. D. Featherstone, J. Dent. Res. 83, C39 (2004).

    Article  Google Scholar 

  4. D. Bakhmutov, S. Gonchukov, O. Kharchenko, O. Nikiforova, and Y. Vdovin, Laser Phys. Lett. 1, 565 (2004).

    Article  Google Scholar 

  5. D. Bakhmutov, S. Gonchukov, O. Kharchenko, O. Voytenok, and B. Zubov, Laser Phys. Lett. 5, 375 (2008).

    Article  Google Scholar 

  6. A. Z. Freitas, D. M. Zezell, M. P. A. Mayer, A. C. Ribeiro, A. S. L. Gomes, and N. D. Vieira, Jr., Laser Phys. Lett. 6, 896 (2009).

    Article  Google Scholar 

  7. J. D. Featherstone and H. Rosenberg, Caries Res. 18, 52 (1984).

    Article  Google Scholar 

  8. K. Sato, Caries Res. 17, 490 (1983).

    Article  Google Scholar 

  9. C. Robinson, A. S. Hallsworth, R. C. Shore, and J. Kirkham, Caries Res. 24, 226 (1990).

    Article  Google Scholar 

  10. P. A. Ana, L. Bachmann, and D. M. Zezell, Laser Phys. 16, 865 (2006).

    Article  ADS  Google Scholar 

  11. L. E. H. de Andrade, J. E. P. Pelino, R. F. Z. Lizarelli, V. S. Bagnato, and O. B. de Oliveira, Laser Phys. Lett. 4, 157 (2007).

    Article  Google Scholar 

  12. L. Bachmann, K. Rosa, P. A. da Ana, D. M. Zezell, A. F. Craievich, and G. Kellermann, Laser Phys. Lett. 6, 159 (2009).

    Article  Google Scholar 

  13. L. E. H. de Andrade, R. F. Z. Lizarelli, J. E. P. Pelino, V. S. Bagnato, and O. B. de Oliveira, Laser Phys. Lett. 4, 457 (2007).

    Article  Google Scholar 

  14. G. H. Westerman, C. M. Flaitz, G. L. Powell, and M. J. Hicks, J. Clin. Laser Med. Surg. 20, 257 (2002).

    Article  Google Scholar 

  15. J. Hicks, D. Winn, 2nd, C. Flaitz, and L. Powell, Quintessence Int. 35, 15 (2004).

    Google Scholar 

  16. S. Nammour, J. P. Rocca, J. J. Pireaux, G. L. Powell, Y. Morciaux, and G. Demortier, Lasers Surg. Med. 36, 220 (2005).

    Article  Google Scholar 

  17. P. C. G. Silva, S. T. Porto, R. F. Z. Lizarelli, and V. S. Bagnato, Laser Phys. Lett. 5, 220 (2008).

    Article  Google Scholar 

  18. C. J. Chang and P. Wilder-Smith, Plast. Reconstr. Surg. 115, 1877 (2005).

    Article  Google Scholar 

  19. D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, J. Biomed. Opt. 12, 1 (2007).

    Article  Google Scholar 

  20. T. Suemori, J. Kato, T. Nakazawa, G. Akashi, and Y. Hirai, Laser Phys. Lett. 5, 454 (2008).

    Article  Google Scholar 

  21. S. Bouillaguet, G. Caillot, J. Forchelet, M. Cattani-Lorente, J. C. Wataha, and N. Krejci, J. Biomed. Mater. Res. B: Appl. Biomater. 72, 260 (2005).

    Google Scholar 

  22. S. K. Filoche, K. Soma, and C. H. Sissons, Oral Microbiol. Immunol. 20, 221 (2005).

    Article  Google Scholar 

  23. E. C. Moreno and R. T. Zahradnik, J. Dent. Res. 53, 226 (1974).

    Google Scholar 

  24. C. S. Queiroz, A. T. Hara, A. F. Paes Leme, and J. A. Cury, Braz. Dent. J. 19, 21 (2008).

    Google Scholar 

  25. J. M. ten Cate and P. P. Duijsters, Caries Res. 16, 201 (1982).

    Article  Google Scholar 

  26. J. D. Featherstone, J. M. ten Cate, M. Shariati, and J. Arends, Caries Res. 17, 385 (1983).

    Article  Google Scholar 

  27. J. J. ten Bosch and B. Angmar-Mansson, J. Dent. Res. 70, 2 (1991).

    Google Scholar 

  28. J. A. Cury, L. N. Hashizume, A. A. Del Bel Cury, and C. P. Tabchoury, Caries Res. 35, 106 (2001).

    Article  Google Scholar 

  29. D. J. White and J. D. Featherstone, Caries Res. 21, 502 (1987).

    Article  Google Scholar 

  30. A. E. Vieira, A. C. Delbem, K. T. Sassaki, E. Rodrigues, J. A. Cury, and R. F. Cunha, Caries Res. 39, 514 (2005).

    Article  Google Scholar 

  31. H. Arikawa, T. Kanie, K. Fujii, H. Takahashi, and S. Ban, Dent. Mater. J. 27, 21 (2008).

    Article  Google Scholar 

  32. A. F. Paes Leme, C. P. Tabchoury, D. T. Zero, and J. A. Cury, Am. J. Dent. 16, 91 (2003).

    Google Scholar 

  33. P. C. Lammers, J. M. Borggreven, and F. C. Driessens, J. Dent. Res. 70, 1486 (1991).

    Google Scholar 

  34. J. M. ten Cate, J. Dent. Res. 80, 1407 (2001).

    Article  Google Scholar 

  35. G. H. Westerman, M. J. Hicks, C. Flaitz, and G. L. Powell, Am. J. Dent. 17, 383 (2004).

    Google Scholar 

  36. C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 023811–1 (2000).

    Article  ADS  Google Scholar 

  37. D. Spitzer and J. T. Bosch, Calcif. Tissue Res. 17, 129 (1975).

    Article  Google Scholar 

  38. G. H. Westerman, M. J. Hicks, C. M. Flaitz, G. L. Powell, and R. J. Blankenau, J. Clin. Pediatr. Dent. 21, 55 (1996).

    Google Scholar 

  39. J. M. ten Cate, W. L. Jongebloed, and J. Arends, Caries Res. 15, 60 (1981).

    Article  Google Scholar 

  40. M. H. Niemz, in Laser-Tissue Interactions: Fundamental and Applications, Ed. by M. H. Niemz (Springer, Berlin, Heidelberg, New York, 1996), 3, pp. 45–150.

    Google Scholar 

  41. D. T. Zero, Adv. Dent. Res. 9, 214 (1995).

    Google Scholar 

  42. J. Arends, J. Schuthof, and W. G. Jongebloed, Caries Res. 14, 190 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Kato.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, I.T., Zezell, D.M., Mendes, F.M. et al. Alterations in enamel remineralization in vitro induced by blue light. Laser Phys. 20, 1469–1474 (2010). https://doi.org/10.1134/S1054660X10110095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10110095

Keywords

Navigation