Skip to main content
Log in

Comparative study of laser and LED systems of low intensity applied to tendon healing

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The aim of this study was to compare the effects of Low-intensity Laser Therapy (LILT) and Light Emitting Diode Therapy (LEDT) of low intensity on the treatment of lesioned Achilles tendon of rats. The experimental model consisted of a partial mechanical lesion on the right Achilles tendon deep portion of 90 rats. One hour after the lesion, the injured animals received applications of laser/LED (685, 830/630, 880 nm), and the same procedure was repeated at 24-h intervals, for 10 days. The healing process and deposition of collagen were evaluated based on a polarization microscopy analysis of the alignment and organization of collagen bundles, through the birefringence (optical retardation-OR). The results showed a real efficiency of treatments based on LEDT and confirmed that LILT seems to be effective on healing process. Although absence of coherence of LED light, tendon healing treatment with this feature was satisfactory and can certainly replace treatments based on laser light applications. Applications of infrared laser at 830 nm and LED 880 nm were more efficient when the aim is a good organization, aggregation, and alignment of the collagen bundles on tendon healing. However, more research is needed for a safety and more efficient determination of a protocol with LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Khan, J. L. Cook, F. Bonar, P. Harcourt, and M. Astrom, Injury Clin. 27, 393 (1999).

    Google Scholar 

  2. C. J. Stolinski, Anat. 186, 577 (1995).

    Google Scholar 

  3. L. Józsa and P. Kannus, Human Tendons. Human Kinetica (USA, 1997).

  4. C. S. Enwemeka and N. I. Spielholz, Dynamics of Human Biologic Tissue (Davis Comp., Philadelphia, 1991), ch. 3, pp. 231.

    Google Scholar 

  5. L. C. Almekinders and G. Deol, Amer. J. Sports Med. 27, 417 (1999).

    Google Scholar 

  6. C. A. Soma and B. R. Mandelbaum, Orthoped. Clin. North Amer. 26, 239 (1995).

    Google Scholar 

  7. O. Salomão, A. E. Carvalho, Jr., T. Fernandes, I. H. Traldi Filho, and J. C. Carvalho Neto, Rev. Brasil. Ortoped. 28, 731 (1993).

    Google Scholar 

  8. C. S. Enwemeka and K. Reddy, Laser Therapy 12, 22 (2000).

    Google Scholar 

  9. H. Pretel, J. A. Oliveira, R. F. Z. Lizarelli, and L. T. O. Ramalho, Laser Phys. Lett. 6, 149 (2009).

    Article  Google Scholar 

  10. J. Schlothauer, S. Hackbarth, and B. Röder, Laser Phys. Lett. 6, 216 (2009).

    Article  Google Scholar 

  11. R. S. Cavalcante, H. Imasato, V. S. Bagnato, and J. R. Perussi, Laser Phys. Lett. 6, 64 (2009).

    Article  Google Scholar 

  12. J. Lademann, P. J. Caspers, A. van der Pol, H. Richter, A. Patzelt, L. Zastrow, M. Darvin, W. Sterry, and J. W. Fluhr, Laser Phys. Lett. 6, 76 (2009).

    Article  Google Scholar 

  13. M. E. Darvin, A. Patzelt, M. Meinke, W. Sterry, and J. Lademann, Laser Phys. Lett. 6, 229 (2009).

    Article  Google Scholar 

  14. C. Stelzer, E. Uhlmann, M. Meinke, J. Lademann, and U. Hansen, Laser Phys. Lett. 6, 311 (2009).

    Article  Google Scholar 

  15. J. Beuthan, C. Dressler, U. Zabarylo, and O. Minet, Laser Phys. Lett. 6, 317 (2009).

    Article  Google Scholar 

  16. Y. Tan, C. S. Xu, X. S. Xia, H. P. Yu, D. Q. Bai, Y. He, and A. W. N. Leung, Laser Phys. Lett. 6, 321 (2009).

    Article  Google Scholar 

  17. G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemwka, Laser Surg. Med. 22, 281 (1998).

    Article  Google Scholar 

  18. C. S. Enwemeka, Tissue Cell 24, 511 (1992).

    Article  Google Scholar 

  19. A. Amat, J. Rigau, R. W. Waynant, I. K. Ilev, and J. J. Anders, J. Photochem. Photobiol. B 82, 152 (2006).

    Article  Google Scholar 

  20. S. Passarella, E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I. M. Catalano, and A. Cingolani, FEBS Lett. 175, 95 (1984).

    Article  Google Scholar 

  21. E. Mester, A. F. Mester, and A. Mester, Lasers Surg. Med. 5, 31 (1985).

    Article  Google Scholar 

  22. Y.-D. Kim, S.-S. Kim, D.-S. Hwang, G.-C. Kim, S.-H. Shin, U.-K. Kim, J.-R. Kim, and I.-K. Chung, Laser Phys. Lett. 4, 681 (2007).

    Article  Google Scholar 

  23. W. Posten, D. A. Wrone, J. S. Dover, K. A. Arndt, S. Silapunt, and M. Alam, Dermatol. Surg. 31, 334 (2005).

    Article  Google Scholar 

  24. T. Utsunomiya, J. Endod. 24, 187 (1998).

    Article  Google Scholar 

  25. H. Pretel, R. F. Lizarelli, and L. T. Ramalho, Laser Surg. Med. 39, 788 (2007).

    Article  Google Scholar 

  26. M. Schaffer, H. Bonel, R. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, J. Photochem. Photobiol. B 54, 55 (2000).

    Article  Google Scholar 

  27. T. Karu, Health Phys. 56, 691 (1989).

    Google Scholar 

  28. J. S. Kana, G. Hutschenreiter, D. Haina, and W. Waidelich, Arch. Surg. 116, 293 (1981).

    Google Scholar 

  29. G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka, Wound Repair Regen. 9, 248 (2001).

    Article  Google Scholar 

  30. Y.-D. Kim, S.-S. Kim, T.-G. Kim, G.-C. Kim, S.-B. Park, and W.-S. Son, Laser Phys. Lett. 4, 616 (2007).

    Article  Google Scholar 

  31. C. F. Oliveira, J. Hebling, P. P. C. Souza, N. T. Sacono, F. R. Lessa, R. F. Z. Lizarelli, and C. A. S. Costa, Laser Phys. Lett. 5, 680 (2008).

    Article  Google Scholar 

  32. H. T. Whelan, R. L. Smits Jr, E. V. Buchman, N. T. Whelan, S. G. Turner, D. A. Margolis, V. Cevenini, H. Stinson, R. Ignatius, T. Martin, J. Cwiklinski, A. F. Philippi, W. R. Graf, B. Hodgson, L. Gould, M. Kane, G. Chen, and J. Caviness, J. Clin. Laser Med. Surg. 19, 305 (2001).

    Article  Google Scholar 

  33. E. M. Vinck, B. J. Cagnie, M. J. Cornelissen, H. A. Declercq, and D. C. Cambier, Laser Med. Sci. 18, 95 (2003).

    Article  Google Scholar 

  34. P. Moore, T. D. Ridgway, R. G. Higbee, E. W. Howard, and M. D. Lucroy, Lasers Surg. Med. 36, 8 (2005).

    Article  Google Scholar 

  35. R. Bortoletto, N. S. Silva, R. A. Zangaro, M. T. Pacheco, R. A. Da Matta, and C. Pacheco-Soares, Lasers Med. Sci. 18, 204 (2004).

    Article  Google Scholar 

  36. P. M. Carrinho, A. C. M. Renno, P. Koeke, A. C. B. Salate, N. A. Parizotto, and B. C. Vidal, Photomed. Laser Surg. 24, 754 (2006).

    Article  Google Scholar 

  37. A. V. Corazza, J. Jorge, C. Kurachi, and V. S. Bagnato, Photomed. Laser Surg. 25, 102 (2007).

    Article  Google Scholar 

  38. V. S. Bagnato, Use of LEDs (Light Emitting Diodes) for Biostimulatory Therapies, BR No. PI0200200-0, 23 Jan. 2002, 14 out. 2003 (2002).

  39. T. I. Karu, The Science of Low-Power Laser Therapy (Gordon Breach Sci., Australia, 1998).

    Google Scholar 

  40. M. R. Tavares, “Therapeutic Laser Effect on Tendon Healing: Experimental Study with Rats,” Master’s Dissertation (Area de Interunidades em Bioengenharia EESC/FMRP/IQSC, Univ. de São Paulo, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. N. Bastos.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastos, J.L.N., Lizarelli, R.F.Z. & Parizotto, N.A. Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Phys. 19, 1925–1931 (2009). https://doi.org/10.1134/S1054660X09170022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09170022

PACS numbers

Navigation