Skip to main content
Log in

The effect of aerobic exercise on the expression of genes in skeletal muscles of trained and untrained men

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

It is well recognized that PGC-1α protein is a key regulator of mitochondrial biogenesis. Mechanical and metabolic perturbations in a skeletal muscle during and after aerobic exercise lead to an increased expression of PGC- gene. This increased expression of PGC- gene after exercise depends on the relative workload intensity and does not depend on the fitness level. The goal of this study was to compare mRNA expression of PGC-, TFAM, and TFB2M regulators of mitochondrial biogenesis and FOXO1 and Atrogin-1 proteolysis-related genes in a skeletal muscle of untrained and trained men after aerobic exercise with the same relative workload. This study showed that PGC- gene expression after exercise was the same in the two groups, but the expression of TFAM and TFB2M genes was higher in untrained muscles than in trained ones. In contrast, the expression of FOXO1 and Atrogin-1 genes increased only in the muscles of trained men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olesen, J., Kiilerich, K., and Pilegaard, H., PGC-1alpha-Mediated Adaptations in Skeletal Muscle, Pflugers Arch., 2010, vol. 460, no. 1, p. 153.

    Article  PubMed  CAS  Google Scholar 

  2. Egan, B., Carson, B.P., Garcia-Roves, P.M., et al., Exercise Intensity-Dependent Regulation of Peroxisome Proliferator-Activated Receptor Coactivator-1 mRNA Abundance Is Associated with Differential Activation of Upstream Signalling Kinases in Human Skeletal Muscle, J. Physiol., 2010, vol. 588.

  3. Jager, S., Handschin, C., St-Pierre, J., et al., AMP-Activated Protein Kinase (AMPK) Action in Skeletal Muscle Via Direct Phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 29, p. 12017.

    Article  PubMed  Google Scholar 

  4. Wright, D.C., Han, D.H., Garcia-Roves, P.M., et al., Exercise-Induced Mitochondrial Biogenesis Begins before the Increase in Muscle PGC-1alpha Expression, J. Biol. Chem., 2007, vol. 282, no. 1, p. 194.

    Article  PubMed  CAS  Google Scholar 

  5. Dumke, C.L., Mark, D.J., Angela, M.E., et al., Successive Bouts of Cycling Stimulates Genes Associated with Mitochondrial Biogenesis, Eur. J. Appl. Physiol., 2009, vol. 107, no. 4, p. 419.

    Article  PubMed  CAS  Google Scholar 

  6. Scarpulla, R.C., Nuclear Control of Respiratory Chain Expression by Nuclear Respiratory Factors and PGC-1-Related Coactivator, Ann. N. Y. Acad. Sci., 2008, vol. 1147, p. 321.

    Article  PubMed  CAS  Google Scholar 

  7. Litonin, D., Sologub, M., Shi, Y., et al., Human Mitochondrial Transcription Revisited: Only TFAM and TFB2M Are Required for Transcription of the Mitochondrial Genes in Vitro, J. Biol. Chem., 2010, vol. 285, no. 24, p. 18129.

    Article  PubMed  CAS  Google Scholar 

  8. Coffey, V.G., Zhong, Z., Shield, A., et al., Early Signaling Responses to Divergent Exercise Stimuli in Skeletal Muscle from Well-Trained Humans, FASEB J., 2006, vol. 20, no. 1, p. 190.

    PubMed  CAS  Google Scholar 

  9. Nordsborg, N.B., Lundby, C., Leick, L., et al., Relative Workload Determines Exercise-Induced Increases in PGC-1alpha mRNA, Med. Sci. Sports Exerc., 2010, vol. 42, no. 8, p. 1477.

    Article  PubMed  CAS  Google Scholar 

  10. Sriwijitkamol, A., Coletta, D.K., Wajcberg, E., et al., Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects with Type 2 Diabetes: A Time-Course and Dose-Response Study, Diabetes, 2007, vol. 56, no. 3, p. 836.

    Article  PubMed  CAS  Google Scholar 

  11. Taylor, E.B., Lamb, J.D., Hurst, R.W., et al., Endurance Training Increases Skeletal Muscle LKB1 and PGC-1alpha Protein Abundance: Effects of Time and Intensity, Am. J. Physiol. Endocrinol. Metab., 2005, vol. 289, no. 6, p. E960.

    Article  PubMed  CAS  Google Scholar 

  12. Evertsen, F., Medbo, J.I., Jebens, E., et al., Effect of Training on the Activity of Five Muscle Enzymes Studied on Elite Cross-Country Skiers, Acta Physiol. Scand., 1999, vol. 167, no. 3, p. 247.

    Article  PubMed  CAS  Google Scholar 

  13. Popov, D., Zinovkin, R., Karger, E., et al., Effects of Continuous and Interval Aerobic Exercise on Mitochondrial Gene Expression, in Abstr. 15th Int. Biochemistry of Exercise Congress, Stockholm, 2012, p. 67.

    Google Scholar 

  14. Tjonna, A.E., Lee, S.J., Rognmo, O., et al., Aerobic Interval Training Versus Continuous Moderate Exercise As a Treatment for the Metabolic Syndrome: A Pilot Study, Circulation, 2008, vol. 118, no. 4, p. 346.

    Article  PubMed  Google Scholar 

  15. Sjodin, B., Jacobs, I., and Svedenhag, J., Changes in Onset of Blood Lactate Accumulation (OBLA) and Muscle Enzymes after Training at OBLA, Eur. J. Appl. Physiol. Occup. Physiol., 1982, vol. 49, no. 1, p. 45.

    Article  PubMed  CAS  Google Scholar 

  16. Hayot, M., Michaud, A., Koechlin, C., et al., Skeletal Muscle Microbiopsy: a Validation Study of a Minimally Invasive Technique, Eur. Respir. J., 2005, vol. 25, no. 3, p. 431.

    Article  PubMed  CAS  Google Scholar 

  17. Pfaffl, M.W., A New Mathematical Model for Relative Quantification in Real-Time RT-PCR, Nucleic Acids Res., 2001, vol. 29, no. 9).

    Google Scholar 

  18. Bassett, D.R.,Jr. and Howley, E.T., Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance, Med. Sci. Sports Exerc., 2000, vol. 32, no. 1, p. 70.

    PubMed  Google Scholar 

  19. Little, J.P., Safdar, A., Bishop, D., et al., An Acute Bout of High-Intensity Interval Training Increases the Nuclear Abundance of PGC-1alpha and Activates Mitochondrial Biogenesis in Human Skeletal Muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 300, no. 6, p. R1303.

    Article  PubMed  CAS  Google Scholar 

  20. Little, J.P., Safdar, A., Cermak, N., et al., Acute Endurance Exercise Increases the Nuclear Abundance of PGC-1alpha in Trained Human Skeletal Muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 298, no. 4, p. R912.

    Article  PubMed  CAS  Google Scholar 

  21. Maughan, R., Gleeson, M., and Greenhaff, P., Biochemistry of Exercise and Training, Oxford Univ. Press, 1997.

    Google Scholar 

  22. Perry, C.G., Lally, J., Holloway, G.P., et al., Repeated Transient mRNA Bursts Precede Increases in Transcriptional and Mitochondrial Proteins During Training in Human Skeletal Muscle, J. Physiol., 2010, vol. 588.

  23. Peters, S.J., Harris, R.A., Wu, P., et al., Human Skeletal Muscle PDH Kinase Activity and Isoform Expression During a 3-Day High-Fat/Low-Carbohydrate Diet, Am. J. Physiol. Endocrinol. Metab., 2001, vol. 281, no. 6, p. E1151.

    PubMed  CAS  Google Scholar 

  24. Kraemer, W.J., Patton, J.F., Gordon, S.E., et al., Compatibility of High-Intensity Strength and Endurance Training on Hormonal and Skeletal Muscle Adaptations, J. Appl. Physiol., 1995, vol. 78, no. 3, p. 976.

    PubMed  CAS  Google Scholar 

  25. Shenkman, B.S., Lyubaeva, E.V., Popov, D.V., et al., Chronic Effects of Low-Frequency Low-Intensity Electrical Stimulation of Stretched Human Muscle, Acta Astronaut., 2007, vol. 60, p. 505.

    Article  Google Scholar 

  26. Southgate, R.J., Neill, B., Prelovsek, O., et al., FOXO1 Regulates the Expression of 4E-BP1 and Inhibits MTOR Signaling in Mammalian Skeletal Muscle, J. Biol. Chem., 2007, vol. 282, no. 29, p. 21176.

    Article  PubMed  CAS  Google Scholar 

  27. Hussain, S.N., Mofarrahi, M., Sigala, I., et al., Mechanical Ventilation-Induced Diaphragm Disuse in Humans Triggers Autophagy, Am. J. Respir. Crit. Care Med., 2010, vol. 182, no. 11, p. 1377.

    Article  PubMed  CAS  Google Scholar 

  28. Kamei, Y., Miura, S., Suzuki, M., et al., Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-Regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control, J. Biol. Chem., 2004, vol. 279, no. 39, p. 41114.

    Article  PubMed  CAS  Google Scholar 

  29. Waddell, D.S., Baehr, L.M., Brandt, J., et al., The Glucocorticoid Receptor and FOXO1 Synergistically Activate the Skeletal Muscle Atrophy-Associated MuRF1 Gene, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 4, p. E785.

    Article  PubMed  CAS  Google Scholar 

  30. Doucet, M., Russell, A.P., Leger, B., et al., Muscle Atrophy and Hypertrophy Signaling in Patients with Chronic Obstructive Pulmonary Disease, Am. J. Respir. Crit. Care Med., 2007, vol. 176, no. 3, p. 261.

    Article  PubMed  CAS  Google Scholar 

  31. Levine, S., Biswas, C., Dierov, J., et al., Increased Proteolysis, Myosin Depletion, and Atrophic AKT-FOXO Signaling in Human Diaphragm Disuse, Am. J. Respir. Crit. Care Med., 2011, vol. 183, no. 4, p. 483.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Popov, R.A. Zinovkin, E.M. Karger, O.S. Tarasova, O.L. Vinogradova, 2013, published in Fiziologiya Cheloveka, 2013, Vol. 39, No. 2, pp. 92–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, D.V., Zinovkin, R.A., Karger, E.M. et al. The effect of aerobic exercise on the expression of genes in skeletal muscles of trained and untrained men. Hum Physiol 39, 190–195 (2013). https://doi.org/10.1134/S0362119713020126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713020126

Keywords

Navigation