Skip to main content
Log in

Conditioned Medium of Mesenchymal Stromal Cells: A New Class of Therapeutics

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mesenchymal stromal cell (MSCs) represent a class of biologics with the prospects for employment as immunomodulatory, tissue-protective, and regenerative therapeutics. In parallel with cellular therapy, cell-free therapy based on MSC-secreted bioactive factors is being actively developed. MSCs secrete a variety of protein, peptide, RNA, and lipid mediators which can be concentrated, frozen, or even lyophilized without loss of activity, which gives them a certain advantage over cellular products requiring liquid nitrogen storage and infrastructure to revive frozen cells. This review (i) describes currently conducted clinical trials of cell-free products containing MSC secretome; (ii) summarizes main approaches to the generation and characterization of conditioned media concentrates and extracellular vesicle isolates; (iii) analyzes a variety of preclinical studies where effectiveness of secretome products has been shown; and (iv) summarizes current knowledge about secretome bioactive components obtained by analysis of in vivo models testing the therapeutic potential of the MSC secretome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM-MSCs, ASCs, DP-MCSs, and UC-MSCs:

mesenchymal stromal cells isolated from bone marrow, adipose tissue, dental pulp, and umbilical cord

CM:

conditioned medium

EV:

extracellular vesicles

GMP:

Good Manufacturing Practices

References

  1. Squillaro, T., Peluso, G., and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: an update, Cell Transplant., 25, 829–848, doi: https://doi.org/10.3727/096368915x689622.

    Article  PubMed  Google Scholar 

  2. Galipeau, J., and Sensebe, L. (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities, Cell Stem Cell, 22, 824–833, doi: https://doi.org/10.1016/j.stem.2018.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olsen, T. R., Ng, K. S., Lock, L. T., Ahsan, T., and Rowley, J. A. (2018) Peak MSC — are we there yet? Front. Med., 5, 178, doi: https://doi.org/10.3389/fmed.2018.00178.

    Article  Google Scholar 

  4. Kuzmina, L. A., Petinati, N. A., Parovichnikova, E. N., Lubimova, L. S., Gribanova, E. O., Gaponova, T. V., Shipounova, I. N., Zhironkina, O. A., Bigildeev, A. E., Svinareva, D. A., Drize, N. J., and Savchenko, V. G. (2012) Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease — A phase II study, Stem Cells Int., 2012, 968213, doi: https://doi.org/10.1155/2012/968213.

    Article  PubMed  CAS  Google Scholar 

  5. Kuzmina, L. A., Petinati, N. A., Shipounova, I. N., Sats, N. V., Bigildeev, A. E., Zezina, E. A., Popova, M. D., Drize, N. J., Parovichnikova, E. N., and Savchenko, V. G. (2016) Analysis of multipotent mesenchymal stromal cells used for acute graft-versus-host disease prophylaxis, Eur. J. Haematol., 96, 425–434, doi: https://doi.org/10.1111/ejh.12613.

    Article  CAS  PubMed  Google Scholar 

  6. Kuzmina, L. A., Petinati, N. A., Sats, N. V., Drize, N. J., Risinskaya, N. V., Sudarikov, A. B., Vasilieva, V. A., Drokov, M. Y., Michalzova, E. D., Parovichnikova, E. N., and Savchenko, V. G. (2016) Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure, Int. J. Hematol., 104, 403–407, doi: https://doi.org/10.1007/s12185-016-2014-2.

    Article  CAS  PubMed  Google Scholar 

  7. Petinati, N., Drize, N., Sats, N., Risinskaya, N., Sudarikov, A., Drokov, M., Dubniak, D., Kraizman, A., Nareyko, M., Popova, N., Firsova, M., Kuzmina, L., Parovichnikova, E., and Savchenko, V. (2018) Recovery of donor hematopoiesis after graft failure and second hematopoietic stem cell trans-plantation with intraosseous administration of mesenchymal stromal cells, Stem Cells Int., 2018, 6495018, doi: https://doi.org/10.1155/2018/6495018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Caplan, A. I. (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med., 6, 1445–1451, doi: https://doi.org/10.1002/sctm.17-0051.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gnecchi, M., Zhang, Z., Ni, A., and Dzau, V. J. (2008) Paracrine mechanisms in adult stem cell signaling and therapy, Circ. Res., 103, 1204–1219, doi: https://doi.org/10.1161/circresaha.108.176826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., and March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells, Circulation, 109, 1292–1298, doi: https://doi.org/10.1161/01.CIR.0000121425.42966.F1.

    Article  PubMed  Google Scholar 

  11. Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., Marban, E., and Abraham, M. R. (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model, Circulation, 113, 1832–1841, doi: https://doi.org/10.1161/circulationa-ha.105.593038.

    Article  PubMed  Google Scholar 

  12. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., Fries, J. W., Tiemann, K., Bohlen, H., Hescheler, J., Welz, A., Bloch, W., Jacobsen, S. E., and Fleischmann, B. K. (2007) Potential risks of bone marrow cell transplantation into infarcted hearts, Blood, 110, 1362–1369, doi: https://doi.org/10.1182/blood-2006-12-063412.

    Article  CAS  PubMed  Google Scholar 

  13. Moll, G., Alm, J. J., Davies, L. C., von Bahr, L., Heldring, N., Stenbeck-Funke, L., Hamad, O. A., Hinsch, R., Ignatowicz, L., Locke, M., Lonnies, H., Lambris, J. D., Teramura, Y., Nilsson-Ekdahl, K., Nilsson, B., and Le Blanc, K. (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells, 32, 2430–2442, doi: https://doi.org/10.1002/stem.1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruno, S., Collino, F., Deregibus, M. C., Grange, C., Tetta, C., and Camussi, G. (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth, Stem Cells Dev., 22, 758–771, doi: https://doi.org/10.1089/scd.2012.0304.

    Article  CAS  PubMed  Google Scholar 

  15. Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., and Liu, G. H. (2013) Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo, PloS One, 8, e61366, doi: https://doi.org/10.1371/journal.pone.0061366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi, J., Zhou, Y., Jiao, Z., Wang, X., Zhao, Y., Li, Y., Chen, H., Yang, L., Zhu, H., and Li, Y. (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway, Cell. Physiol. Biochem., 42, 2242–2254, doi: https://doi.org/10.1159/000479998.

    Article  CAS  PubMed  Google Scholar 

  17. Vallabhaneni, K. C., Penfornis, P., Dhule, S., Guillonneau, F., Adams, K. V., Mo, Y. Y., Xu, R., Liu, Y., Watabe, K., Vemuri, M. C., and Pochampally, R. (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites, Oncotarget, 6, 4953–4967, doi: https://doi.org/10.18632/oncotarget.3211.

    Article  PubMed  Google Scholar 

  18. Yang, Y., Bucan, V., Baehre, H., von der Ohe, J., Otte, A., and Hass, R. (2015) Acquisition of new tumor cell properties by MSC-derived exosomes, Int. J. Oncol., 47, 244–252, doi: https://doi.org/10.3892/ijo.2015.3001.

    Article  CAS  PubMed  Google Scholar 

  19. Pascucci, L., Cocce, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Vigano, L., Locatelli, A., Sisto, F., Doglia, S. M., Parati, E., Bernardo, M. E., Muraca, M., Alessandri, G., Bondiolotti, G., and Pessina, A. (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery, J. Control. Release, 192, 262–270, doi: https://doi.org/10.1016/j.jconrel.2014.07.042.

    Article  CAS  PubMed  Google Scholar 

  20. Vakhshiteh, F., Atyabi, F., and Ostad, S. N. (2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy, Int. J. Nanomed., 14, 2847–2859, doi: https://doi.org/10.2147/ijn.S200036.

    Article  CAS  Google Scholar 

  21. Deng, H., Sun, C., Sun, Y., Li, H., Yang, L., Wu, D., Gao, Q., and Jiang, X. (2018) Lipid, protein, and microRNA composition within mesenchymal stem cell-derived exosomes, Cell. Reprogram., 20, 178–186, doi: https://doi.org/10.1089/cell.2017.0047.

    Article  CAS  PubMed  Google Scholar 

  22. Dahbour, S., Jamali, F., Alhattab, D., Al-Radaideh, A., Ababneh, O., Al-Ryalat, N., Al-Bdour, M., Hourani, B., Msallam, M., Rasheed, M., Huneiti, A., Bahou, Y., Tarawneh, E., and Awidi, A. (2017) Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy, CNS Neurosci. Ther., 23, 866–874, doi: https://doi.org/10.1111/cns.12759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kordelas, L., Rebmann, V., Ludwig, A. K., Radtke, S., Ruesing, J., Doeppner, T. R., Epple, M., Horn, P. A., Beelen, D. W., and Giebel, B. (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease, Leukemia, 28, 970–973, doi: https://doi.org/10.1038/leu.2014.41.

    Article  CAS  PubMed  Google Scholar 

  24. Nassar, W., El-Ansary, M., Sabry, D., Mostafa, M. A., Fayad, T., Kotb, E., Temraz, M., Saad, A. N., Essa, W., and Adel, H. (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases, Biomater. Res., 20, 21, doi: https://doi.org/10.1186/s40824-016-0068-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhou, B. R., Xu, Y., Guo, S. L., Xu, Y., Wang, Y., Zhu, F., Permatasari, F., Wu, D., Yin, Z. Q., and Luo, D. (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing, BioMed Res. Int., 2013, 519126, doi: https://doi.org/10.1155/2013/519126.

    PubMed  PubMed Central  Google Scholar 

  26. Fukuoka, H., Narita, K., and Suga, H. (2017) Hair regeneration therapy: application of adipose-derived stem cells, Curr. Stem Cell Res. Ther., 12, 531–534, doi: https://doi.org/10.2174/1574888x12666170522114307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin, H., Won, C. H., Chung, W. K., and Park, B. S. (2017) Up-to-date clinical trials of hair regeneration using conditioned media of adipose-derived stem cells in male and female pattern hair loss, Curr. Stem Cell Res. Ther., 12, 524–530, doi: https://doi.org/10.2174/1574888x12666170504120244.

    Article  CAS  PubMed  Google Scholar 

  28. Katagiri, W., Watanabe, J., Toyama, N., Osugi, M., Sakaguchi, K., and Hibi, H. (2017) Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation, Implant Dent., 26, 607–612, doi: https://doi.org/10.1097/id.0000000000000618.

    Article  PubMed  Google Scholar 

  29. Fujita, Y., Kadota, T., Araya, J., Ochiya, T., and Kuwano, K. (2018) Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases, J. Clin. Med., 7, doi: https://doi.org/10.3390/jcm7100355.

    Article  CAS  PubMed Central  Google Scholar 

  30. Balducci, L., Blasi, A., Saldarelli, M., Soleti, A., Pessina, A., Bonomi, A., Cocce, V., Dossena, M., Tosetti, V., Ceserani, V., Navone, S. E., Falchetti, M. L., Parati, E. A., and Alessandri, G. (2014) Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors, Stem Cell Res. Ther., 5, 63, doi: https://doi.org/10.1186/scrt452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., Mu, H., Melo, L. G., Pratt, R. E., Ingwall, J. S., and Dzau, V. J. (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement, FASEB J., 20, 661–669, doi: https://doi.org/10.1096/fj.05-5211com.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Chen, Y., Zhao, Z., Meng, Q., Yu, Y., Sun, J., Yang, Z., Chen, Y., Li, J., Ma, T., Liu, H., Li, Z., Yang, J., and Shen, Z. (2018) Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction, J. Am. Heart Assoc., 7, e008737, doi: https://doi.org/10.1161/jaha.118.008737.

    PubMed  PubMed Central  Google Scholar 

  33. Bhang, S. H., Lee, S., Shin, J. Y., Lee, T. J., Jang, H. K., and Kim, B. S. (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis, Mol. Ther., 22, 862–872, doi: https://doi.org/10.1038/mt.2013.301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon, S. H., Bhang, S. H., Jang, H. K., Rhim, T., and Kim, B. S. (2015) Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing, J. Surg. Res., 194, 8–17, doi: https://doi.org/10.1016/j.jss.2014.10.053.

    Article  CAS  PubMed  Google Scholar 

  35. Xin, H., Katakowski, M., Wang, F., Qian, J. Y., Liu, X. S., Ali, M. M., Buller, B., Zhang, Z. G., and Chopp, M. (2017) MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats, Stroke, 48, 747–753, doi: https://doi.org/10.1161/strokeaha.116.015204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., Ashraf, M., and Xu, M. (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection, Int. J. Cardiol., 182, 349–360, doi: https://doi.org/10.1016/j.ijcard.2014.12.043.

    Article  PubMed  Google Scholar 

  37. Li, H., Liu, D., Li, C., Zhou, S., Tian, D., Xiao, D., Zhang, H., Gao, F., and Huang, J. (2017) Exosomes secreted from mutant-HIF-1alpha-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit, Cell Biol. Int., 41, 1379–1390, doi: https://doi.org/10.1002/cbin.10869.

    Article  CAS  PubMed  Google Scholar 

  38. Bruno, S., Tapparo, M., Collino, F., Chiabotto, G., Deregibus, M. C., Soares Lindoso, R., Neri, F., Kholia, S., Giunti, S., Wen, S., Quesenberry, P., and Camussi, G. (2017) Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells, Tissue Eng. Part A, 23, 1262–1273, doi: https://doi.org/10.1089/ten.TEA.2017.0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, S., Dooner, M., Cheng, Y., Papa, E., Del Tatto, M., Pereira, M., Deng, Y., Goldberg, L., Aliotta, J., Chatterjee, D., Stewart, C., Carpanetto, A., Collino, F., Bruno, S., Camussi, G., and Quesenberry, P. (2016) Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells, Leukemia, 30, 2221–2231, doi: https://doi.org/10.1038/leu.2016.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haga, H., Yan, I. K., Takahashi, K., Matsuda, A., and Patel, T. (2017) Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice, Stem Cells Transl. Med., 6, 1262–1272, doi: https://doi.org/10.1002/sctm.16-0226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, H., Poirier, C., Cook, T., Traktuev, D. O., Merfeld-Clauss, S., Lease, B., Petrache, I., March, K. L., and Bogatcheva, N. V. (2015) Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis, J. Transl. Med., 13, 67, doi: https://doi.org/10.1186/s12967-015-0422-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Devaney, J., Horie, S., Masterson, C., Elliman, S., Barry, F., O’Brien, T., Curley, G. F., O’Toole, D., and Laffey, J. G. (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat, Thorax, 70, 625–635, doi: https://doi.org/10.1136/thoraxjnl-2015-206813.

    Article  PubMed  Google Scholar 

  43. Monsel, A., Zhu, Y. G., Gennai, S., Hao, Q., Hu, S., Rouby, J. J., Rosenzwajg, M., Matthay, M. A., and Lee, J. W. (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice, Am. J. Respir. Crit. Care Med., 192, 324–336, doi: https://doi.org/10.1164/rccm.201410-1765OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahn, S. Y., Park, W. S., Kim, Y. E., Sung, D. K., Sung, S. I., Ahn, J. Y., and Chang, Y. S. (2018) Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury, Exp. Mol. Med., 50, 26, doi: https://doi.org/10.1038/s12276-018-0055-8.

    Article  PubMed Central  CAS  Google Scholar 

  45. Chaubey, S., Thueson, S., Ponnalagu, D., Alam, M. A., Gheorghe, C. P., Aghai, Z., Singh, H., and Bhandari, V. (2018) Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6, Stem Cell Res. Ther., 9, 173, doi: https://doi.org/10.1186/s13287-018-0903-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Eirin, A., Zhu, X. Y., Jonnada, S., Lerman, A., van Wijnen, A. J., and Lerman, L. O. (2018) Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in swine, Cell Transplant., 27, 1080–1095, doi: https://doi.org/10.1177/0963689718780942.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meng, Y., Eirin, A., Zhu, X. Y., O’Brien, D. R., Lerman, A., van Wijnen, A. J., and Lerman, L. O. (2018) The metabolic syndrome modifies the mRNA expression profile of extracellular vesicles derived from porcine mesenchymal stem cells, Diabet. Metabol. Syndr., 10, 58, doi: https://doi.org/10.1186/s13098-018-0359-9.

    Article  CAS  Google Scholar 

  48. Reis, L. A., Borges, F. T., Simoes, M. J., Borges, A. A., Sinigaglia-Coimbra, R., and Schor, N. (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats, PloS One, 7, e44092, doi: https://doi.org/10.1371/journal.pone.0044092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zisa, D., Shabbir, A., Suzuki, G., and Lee, T. (2009) Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair, Biochem. Biophys. Res. Commun., 390, 834–838, doi: https://doi.org/10.1016/j.bbrc.2009.10.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takagaki, K., Oki, K., Takeshita, F., Sakai, Y., Kuroda, M., and Ochiya, T. (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes, Sci. Rep., 3, 1197, doi: https://doi.org/10.1038/srep01197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., Shi, H., Wu, L., Zhu, W., Qian, H., and Xu, W. (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing, Stem Cells, 33, 2158–2168, doi: https://doi.org/10.1002/stem.1771.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., Zhu, Y., Wu, L., Pan, Z., Zhu, W., Qian, H., and Xu, W. (2015) Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/betacatenin pathway, Stem Cells Transl. Med., 4, 513–522, doi: https://doi.org/10.5966/sctm.2014-0267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan, Y., Jiang, W., Tan, Y., Zou, S., Zhang, H., Mao, F., Gong, A., Qian, H., and Xu, W. (2017) HucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury, Mol. Ther., 25, 465–479, doi: https://doi.org/10.1016/j.ymthe.2016.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Souza, B. S. F., da Silva, K. N., Silva, D. N., Rocha, V. P. C., Paredes, B. D., Azevedo, C. M., Nonaka, C. K., Carvalho, G. B., Vasconcelos, J. F., Dos Santos, R. R., and Soares, M. B. P. (2017) Galectin-3 knockdown impairs survival, migration, and immunomodulatory actions of mesenchymal stromal cells in a mouse model of Chagas disease cardiomyopathy, Stem Cells Int., 2017, 3282656, doi: https://doi.org/10.1155/2017/3282656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sioud, M., Mobergslien, A., Boudabous, A., and Floisand, Y. (2011) Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins, Int. J. Oncol., 38, 385–390, doi: https://doi.org/10.3892/ijo.2010.869.

    Article  CAS  PubMed  Google Scholar 

  56. He, Y., Zhou, S., Liu, H., Shen, B., Zhao, H., Peng, K., and Wu, X. (2015) Indoleamine 2,3-dioxygenase transfected mesenchymal stem cells induce kidney allograft tolerance by increasing the production and function of regulatory T cells, Transplantation, 99, 1829–1838, doi: https://doi.org/10.1097/tp.0000000000000856.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Q., Fu, L., Liang, Y., Guo, Z., Wang, L., Ma, C., and Wang, H. (2018) Exosomes originating from MSCs stimulated with TGF-beta and IFN-gamma promote Treg differentiation, J. Cell Physiol., 233, 6832–6840, doi: https://doi.org/10.1002/jcp.26436.

    Article  CAS  PubMed  Google Scholar 

  58. Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., and Camussi, G. (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury, J. Am. Soc. Nephrol., 20, 1053–1067, doi: https://doi.org/10.1681/asn.2008070798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gatti, S., Bruno, S., Deregibus, M. C., Sordi, A., Cantaluppi, V., Tetta, C., and Camussi, G. (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury, Nephrol. Dial. Transplant., 26, 1474–1483, doi: https://doi.org/10.1093/ndt/gfr015.

    Article  CAS  PubMed  Google Scholar 

  60. Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., Vykoukal, J. V., Ruppert, K. A., Cox, C. S., Jr., and Olson, S. D. (2018) Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation, Stem Cells, 36, 79–90, doi: https://doi.org/10.1002/stem.2730.

    Article  CAS  PubMed  Google Scholar 

  61. Collino, F., Bruno, S., Incarnato, D., Dettori, D., Neri, F., Provero, P., Pomatto, M., Oliviero, S., Tetta, C., Quesenberry, P. J., and Camussi, G. (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs, J. Am. Soc. Nephrol., 26, 2349–2360, doi: https://doi.org/10.1681/asn.2014070710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., and Xu, J. (2018) Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs, Stem Cell Res. Ther., 9, 320, doi: https://doi.org/10.1186/s13287-018-1069-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z. G., and Chopp, M. (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles, Stem Cells, 31, 2737–2746, doi: https://doi.org/10.1002/stem.1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gu, D., Zou, X., Ju, G., Zhang, G., Bao, E., and Zhu, Y. (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30, Stem Cells Int., 2016, 2093940, doi: https://doi.org/10.1155/2016/2093940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Feng, Y., Huang, W., Wani, M., Yu, X., and Ashraf, M. (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22, PloS One, 9, e88685, doi: https://doi.org/10.1371/journal.pone.0088685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., Wang, Y., Caldwell, C. C., Peng, T., Zingarelli, B., and Fan, G. C. (2015) Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis, Sci. Rep., 5, 13721, doi: https://doi.org/10.1038/srep13721.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, L., Lu, F. B., Chen, D. Z., Wu, J. L., Hu, E. D., Xu, L. M., Zheng, M. H., Li, H., Huang, Y., Jin, X. Y., Gong, Y. W., Lin, Z., Wang, X. D., and Chen, Y. P. (2018) BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis, Mol. Immunol., 93, 38–46, doi: https://doi.org/10.1016/j.molimm.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  68. Fernandez-Messina, L., Gutierrez-Vazquez, C., Rivas-Garcia, E., Sanchez-Madrid, F., and de la Fuente, H. (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles, Biol. Cell, 107, 61–77, doi: https://doi.org/10.1111/boc.201400081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hyun, J., Wang, S., Kim, J., Kim, G. J., and Jung, Y. (2015) MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells, Sci. Rep., 5, 14135, doi: https://doi.org/10.1038/srep14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, B., Yao, K., Huuskes, B. M., Shen, H. H., Zhuang, J., Godson, C., Brennan, E. P., Wilkinson-Berka, J. L., Wise, A. F., and Ricardo, S. D. (2016) Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis, Mol. Ther., 24, 1290–1301, doi: https://doi.org/10.1038/mt.2016.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lou, G., Yang, Y., Liu, F., Ye, B., Chen, Z., Zheng, M., and Liu, Y. (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis, J. Cell. Mol. Med., 21, 2963–2973, doi: https://doi.org/10.1111/jcmm.13208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fatima, F., Ekstrom, K., Nazarenko, I., Maugeri, M., Valadi, H., Hill, A. F., Camussi, G., and Nawaz, M. (2017) Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration, Front. Genet., 8, 161, doi: https://doi.org/10.3389/fgene.2017.00161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654–659, doi: https://doi.org/10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  74. Zhu, Y. G., Feng, X. M., Abbott, J., Fang, X. H., Hao, Q., Monsel, A., Qu, J. M., Matthay, M. A., and Lee, J. W. (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice, Stem Cells, 32, 116–125, doi: https://doi.org/10.1002/stem.1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kota, D. J., Prabhakara, K. S., Toledano-Furman, N., Bhattarai, D., Chen, Q., DiCarlo, B., Smith, P., Triolo, F., Wenzel, P. L., Cox, C. S., Jr., and Olson, S. D. (2017) Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury, Stem Cells, 35, 1416–1430, doi: https://doi.org/10.1002/stem.2603.

    Article  CAS  PubMed  Google Scholar 

  76. Ozcan, S., Alessio, N., Acar, M. B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U. (2016) Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses, Aging, 8, 1316–1329, doi: https://doi.org/10.18632/aging.100971.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., and Rice, C. M. (2018) Reduced neuro-protective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis, Cytotherapy, 20, 21–28, doi: https://doi.org/10.1016/j.jcyt.2017.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Romanov, Y. A., Volgina, N. E., Dugina, T. N., Kabaeva, N. V., and Sukhikh, G. T. (2019) Effect of storage conditions on the integrity of human umbilical cord mesenchymal stromal cell-derived microvesicles, Bull. Exp. Biol. Med., 167, 131–135, doi: https://doi.org/10.1007/s10517-019-04476-2.

    Article  PubMed  Google Scholar 

  79. Charoenviriyakul, C., Takahashi, Y., Nishikawa, M., and Takakura, Y. (2018) Preservation of exosomes at room temperature using lyophilization, Int. J. Pharm., 553, 1–7, doi: https://doi.org/10.1016/j.ijpharm.2018.10.032.

    Article  CAS  PubMed  Google Scholar 

  80. Ionescu, L., Byrne, R. N., van Haaften, T., Vadivel, A., Alphonse, R. S., Rey-Parra, G. J., Weissmann, G., Hall, A., Eaton, F., and Thebaud, B. (2012) Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action, Am. J. Physiol. Lung. Cell. Mol. Physiol., 303, L967–977, doi: https://doi.org/10.1152/ajplung.00144.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rathinasabapathy, A., Bruce, E., Espejo, A., Horowitz, A., Sudhan, D. R., Nair, A., Guzzo, D., Francis, J., Raizada, M. K., Shenoy, V., and Katovich, M. J. (2016) Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis, Br. J. Pharmacol., 173, 2859–2879, doi: https://doi.org/10.1111/bph.13562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahmadi, M., Rahbarghazi, R., Aslani, M. R., Shahbazfar, A. A., Kazemi, M., and Keyhanmanesh, R. (2017) Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes, Biomed. Pharmacother., 85, 28–40, doi: https://doi.org/10.1016/j.biopha.2016.11.127.

    Article  CAS  PubMed  Google Scholar 

  83. Parekkadan, B., van Poll, D., Suganuma, K., Carter, E. A., Berthiaume, F., Tilles, A. W., and Yarmush, M. L. (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure, PloS One, 2, e941, doi: https://doi.org/10.1371/journal.pone.0000941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bi, B., Schmitt, R., Israilova, M., Nishio, H., and Cantley, L. G. (2007) Stromal cells protect against acute tubular injury via an endocrine effect, J. Am. Soc. Nephrol., 18, 2486–2496, doi: https://doi.org/10.1681/asn.2007020140.

    Article  PubMed  Google Scholar 

  85. Kay, A. G., Long, G., Tyler, G., Stefan, A., Broadfoot, S. J., Piccinini, A. M., Middleton, J., and Kehoe, O. (2017) Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis, Sci. Rep., 7, 18019, doi: https://doi.org/10.1038/s41598-017-18144-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Linero, I., and Chaparro, O. (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration, PloS One, 9, e107001, doi: https://doi.org/10.1371/journal.pone.0107001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Fontanilla, C. V., Gu, H., Liu, Q., Zhu, T. Z., Zhou, C., Johnstone, B. H., March, K. L., Pascuzzi, R. M., Farlow, M. R., and Du, Y. (2015) Adipose-derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis, Sci. Rep., 5, 16953, doi: https://doi.org/10.1038/srep16953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamagata, M., Yamamoto, A., Kako, E., Kaneko, N., Matsubara, K., Sakai, K., Sawamoto, K., and Ueda, M. (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice, Stroke, 44, 551–554, doi: https://doi.org/10.1161/strokeaha.112.676759.

    Article  PubMed  Google Scholar 

  89. Bai, L., Lennon, D. P., Caplan, A. I., DeChant, A., Hecker, J., Kranso, J., Zaremba, A., and Miller, R. H. (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models, Nat. Neurosci., 15, 862–870, doi: https://doi.org/10.1038/nn.3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Suto, N., Mieda, T., Iizuka, A., Nakamura, K., and Hirai, H. (2016) Morphological and functional attenuation of degeneration of peripheral neurons by mesenchymal stem cell-conditioned medium in spinocerebellar ataxia type 1-knock-in mice, CNS Neurosci. Ther., 22, 670–676, doi: https://doi.org/10.1111/cns.12560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, J., Zhang, Y., Song, X., Zhu, J., and Zhu, Q. (2019) The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats, Cell Transplant., 28, 105–115, doi: https://doi.org/10.1177/0963689718807410.

    Article  PubMed  Google Scholar 

  92. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., Salto-Tellez, M., Timmers, L., Lee, C. N., El Oakley, R. M., Pasterkamp, G., de Kleijn, D. P., and Lim, S. K. (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res., 4, 214–222, doi: https://doi.org/10.1016/j.scr.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  93. Gangadaran, P., Rajendran, R. L., Lee, H. W., Kalimuthu, S., Hong, C. M., Jeong, S. Y., Lee, S. W., Lee, J., and Ahn, B. C. (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia, J. Control. Release, 264, 112–126, doi: https://doi.org/10.1016/j.jconrel.2017.08.022.

    Article  CAS  PubMed  Google Scholar 

  94. Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., and Noel, D. (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis, Sci. Rep., 7, 16214, doi: https://doi.org/10.1038/s41598-017-15376-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Doeppner, T. R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., de Miroschedji, K., Horn, P. A., Giebel, B., and Hermann, D. M. (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression, Stem Cells Transl. Med., 4, 1131–1143, doi: https://doi.org/10.5966/sctm.2015-0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, S. S., Jia, J., and Wang, Z. (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice, J. Alzheimers Dis., 61, 1005–1013, doi: https://doi.org/10.3233/jad-170848.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., and Xiong, Y. (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury, J. Neurosurg., 122, 856–867, doi: https://doi.org/10.3171/2014.11.Jns14770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perets, N., Hertz, S., London, M., and Offen, D. (2018) Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice, Mol. Autism, 9, 57, doi: https://doi.org/10.1186/s13229-018-0240-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, J. H., Yin, X. M., Xu, Y., Xu, C. C., Lin, X., Ye, F. B., Cao, Y., and Lin, F. Y. (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats, J. Neurotrauma, 34, 3388–3396, doi: https://doi.org/10.1089/neu.2017.5063.

    Article  PubMed  Google Scholar 

  100. Curley, G. F., Ansari, B., Hayes, M., Devaney, J., Masterson, C., Ryan, A., Barry, F., O’Brien, T., Toole, D. O., and Laffey, J. G. (2013) Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury, Anesthesiology, 118, 924–932, doi: https://doi.org/10.1097/ALN.0b013e318287ba08.

    Article  CAS  PubMed  Google Scholar 

  101. Hayes, M., Curley, G. F., Masterson, C., Devaney, J., O’Toole, D., and Laffey, J. G. (2015) Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury, Intens. Care Med. Exp., 3, 29, doi: https://doi.org/10.1186/s40635-015-0065-y.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Institute of Diabetes, Digestive and Kidney Diseases (R41 1R41DK115317 grant to Dr. Coleman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bogatcheva.

Additional information

Conflict of interest

Dr. Bogatcheva holds a patent for the use of ASC-CM for the treatment of acute respiratory distress syndrome. Dr. Coleman is a Chief Executive Officer of Theratome Bio Inc., a biotech startup company developing ASC-CM-based product for clinical trials.

Compliance with ethical standards

This article does not contain descriptions of studies with participation of humans or animals performed by any of the authors.

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 11, pp. 1701–1717.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatcheva, N.V., Coleman, M.E. Conditioned Medium of Mesenchymal Stromal Cells: A New Class of Therapeutics. Biochemistry Moscow 84, 1375–1389 (2019). https://doi.org/10.1134/S0006297919110129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919110129

Keywords

Navigation