Skip to main content
Log in

Neonatal proinflammatory stress induces accumulation of corticosterone and interleukin-6 in the hippocampus of juvenile rats: Potential mechanism of synaptic plasticity impairments

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Infectious diseases in early postnatal ontogenesis can induce neuroinflammation, disrupt normal central nervous system development, and contribute to pathogenesis of cerebral pathologies in adults. To study long-term consequences of such early stress, we induced neonatal proinflammatory stress (NPS) by injecting bacterial lipopolysaccharide into rat pups on postnatal days 3 and 5 and then assessed the levels of corticosterone, proinflammatory cytokines and their mRNAs, and neurotrophins and their mRNAs in the hippocampus and neocortex of the one-month-old animals. Long-term potentiation (LTP) was studied in hippocampal slices as an index of synaptic plasticity. NPS-induced impairments of LTP were accompanied by the accumulation of corticosterone and IL-6 in the hippocampus. In the neocortex, a decrease in exon IV BDNF mRNA was detected. We suggest that excessive corticosterone delivery to hippocampal receptors and proinflammatory changes persisting during brain maturation are among the principal molecular mechanisms responsible for NPSinduced neuroplasticity impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

CS:

corticosterone

GR:

glucocorticoid receptor

HPA:

hypothalamic–pituitary–adrenal axis

IL:

interleukin

LPS:

lipopolysaccharide

LTP:

long-term potentiation

MR:

mineralocorticoid receptor

NGF:

nerve growth factor

NPS:

neonatal proinflammatory stress

TNF:

tumor necrosis factor

References

  1. Tishkina, A., Stepanichev, M., Kudryashova, I., Freiman, S., Onufriev, M., Lazareva, N., and Gulyaeva, N. (2016) Neonatal proinflammatory challenge in male Wistar rats: effects on behavior, synaptic plasticity, and adrenocortical stress response, Behav. Brain Res., 304, 1–10.

    Article  PubMed  Google Scholar 

  2. Walker, A., Nakamura, T., Byrne, R. J., Naicker, S., Tynan, R. J., Hunte, M., and Hodgson, D. M. (2009) Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis, Psychoneuroendocrinology, 34, 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  3. Silverman, M. N., Pearce, B. D., Biron, C. A., and Miller, A. H. (2005) Immune modulation of the hypothalamicpituitary-adrenal (HPA) axis during viral infection, Viral Immunol., 18, 41–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gwosdow, A. R., Kumar, M. S., and Bode, H. H. (1990) Interleukin 1 stimulation of the hypothalamic-pituitaryadrenal axis, Am. J. Physiol., 258, E65–E70.

    CAS  PubMed  Google Scholar 

  5. Turnbull, A. V., and Rivier, C. L. (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action, Physiol. Rev., 79, 1–71.

    CAS  PubMed  Google Scholar 

  6. Gatti, S., and Bartfai, T. (1993) Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6, Brain Res., 624, 291–294.

    Article  CAS  PubMed  Google Scholar 

  7. Dantzer, R. (2004) Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity, Eur. J. Pharmacol., 500, 399–411.

    Article  CAS  PubMed  Google Scholar 

  8. Chung, D. W., Yoo, K. Y., Hwang, I. K., Kim, D. W., Chung, J. Y., Lee, C. H., Choi, J. H., Choi, S. Y., Youn, H. Y., Lee, I. S., and Won, M. H. (2010) Systemic administration of lipopolysaccharide induces cyclooxygenase-2 immunoreactivity in endothelium and increases microglia in the mouse hippocampus, Cell Mol. Neurobiol., 30, 531–541.

    Article  CAS  PubMed  Google Scholar 

  9. Chida, D., Imaki, T., Suda, T., and Iwakura, Y. (2005) Involvement of corticotropin-releasing hormoneand interleukin (IL)-6-dependent proopiomelanocortin induction in the anterior pituitary during hypothalamic-pituitary-adrenal axis activation by IL-1a, Endocrinology, 146, 5496–5502.

    Article  CAS  PubMed  Google Scholar 

  10. Kageyama, K., Tamasawa, N., and Suda, T. (2011) Signal transduction in the hypothalamic corticotropin-releasing factor system and its clinical implications, Stress, 14, 357–367.

    Article  CAS  PubMed  Google Scholar 

  11. De Kloet, E. R., Fitzsimons, C. P., Datson, N. A., Meijer, O. C., and Vreugdenhil, E. (2009) Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA, Brain Res., 1293, 129–141.

    Article  PubMed  Google Scholar 

  12. Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., and Choi, D. C. (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness, Front. Neuroendocrinol., 24, 151–180.

    Article  CAS  PubMed  Google Scholar 

  13. Reul, J. M., and De Kloet, E. R. (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation, Endocrinology, 117, 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  14. Dallman, M. F. (2005) Fast glucocorticoid actions on brain: back to the future, Front. Neuroendocrinol., 26, 103–108.

    Article  CAS  PubMed  Google Scholar 

  15. Tasker, J. G., Di, S., and Malcher-Lopes, R. (2006) Minireview: rapid glucocorticoid signaling via membrane-associated receptors, Endocrinology, 147, 5549–5556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joëls, M., Karst, H., Krugers, H., and Lucassen, P. (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis, Front. Neuroendocrinol., 28, 72–96.

    Article  PubMed  Google Scholar 

  17. Kim, J. J., and Diamond, D. M. (2002) The stressed hippocampus, synaptic plasticity and lost memories, Nature Rev. Neurosci., 3, 453–462.

    CAS  Google Scholar 

  18. Chao, M. V., Rajagopal, R., and Lee, F. S. (2006) Neurotrophin signaling in health and disease, Clin. Sci. (Lond.), 110, 167–173.

    Article  CAS  Google Scholar 

  19. Ohira, K., and Hayashi, M. (2009) A new aspect of the TrkB signaling pathway in neural plasticity, Curr. Neuropharmacol., 7, 276–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wosiski-Kuhn, M., Erion, J. R., Gomez-Sanchez, E. P., Gomez-Sanchez, C. E., and Stranahan, A. M. (2014) Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice, Psychoneuroendocrinology, 42, 165–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong, L., Prieto, G. A., Kramar, E. A., Smith, E. D., Cribbs, D. H., Lynch, G., and Cotman, C. W. (2012) Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase, J. Neurosci., 32, 17714–17724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peregud, D. I., Yakovlev, A. A., Stepanichev, M. Y., Onufriev, M. V., Panchenko, L. F., and Gulyaeva, N. V. (2016) Expression of BDNF and TrkB phosphorylation in the rat frontal cortex during morphine withdrawal are NO dependent, Cell Mol. Neurobiol., 36, 839–849.

    Article  CAS  PubMed  Google Scholar 

  23. Shanks, N., Larocque, S., and Meaney, M. J. (1995) Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress, J. Neurosci., 15, 376–384.

    CAS  PubMed  Google Scholar 

  24. Walker, A. K., Nakamura, T., and Hodgson, D. M. (2010) Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats, Stress, 13, 506–515.

    Article  CAS  PubMed  Google Scholar 

  25. Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S., and Sapolsky, R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus, Science, 239, 766–768.

    Article  CAS  PubMed  Google Scholar 

  26. Himmerich, H., Fischer, J., Bauer, K., Kirkby, K. C., Sack, U., and Krugel, U. (2013) Stress-induced cytokine changes in rats, Eur. Cytokine Netw., 24, 97–103.

    CAS  PubMed  Google Scholar 

  27. Piskunov, A. K., Yakovlev, A. A., Stepanichev, M. Yu., Onufriev, M. V., and Gulyaeva, N. V. (2011) Selective sensitivity of hippocampus to interoceptive stress: effects of interleukin-1β and erythropoietin, Neirokhimiya, 28, 216–219.

    Google Scholar 

  28. Bilbo, S. D., Barrientos, R. M., Eads, A. S., Northcutt, A., Watkins, L. R., Rudy, J. W., and Maier, S. F. (2008) Earlylife infection leads to altered BDNF and IL-1β mRNA expression in rat hippocampus following learning in adulthood, Brain Behav. Immun., 22, 451–455.

    Article  CAS  PubMed  Google Scholar 

  29. Bland, S. T., Beckley, J. T., Watkins, L. R., Maier, S. F., and Bilbo, S. D. (2010) Neonatal Escherichia coli infection alters glial, cytokine, and neuronal gene expression in response to acute amphetamine in adolescent rats, Neurosci. Lett., 474, 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair, A., Vadodaria, K. C., Banerjee, S. B., Benekareddy, M., Dias, B. G., Duman, R. S., and Vaidya, V. A. (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus, Neuropsychopharmacology, 32, 1504–1519.

    Article  CAS  PubMed  Google Scholar 

  31. Dwivedi, Y., Rizavi, H. S., and Pandey, G. N. (2006) Antidepressants reverse corticosterone-mediated decrease in BDNF expression: dissociation in regulation of specific exons by antidepressants and corticosterone, Neuroscience, 139, 1017–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharvit, A., Segal, M., Kehat, O., Stork, O., and RichterLevin, G. (2015) Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone, Stress, 18, 319–327.

    Article  CAS  PubMed  Google Scholar 

  33. Li, A. J., Katafuchi, T., Oda, S., Hori, T., and Oomura, Y. (1997) Interleukin-6 inhibits long-term potentiation in rat hippocampal slices, Brain Res., 748, 30–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Onufriev.

Additional information

Original Russian Text © M. V. Onufriev, S. V. Freiman, D. I. Peregud, I. V. Kudryashova, A. O. Tishkina, M. Yu. Stepanichev, N. V. Gulyaeva, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 410-417.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onufriev, M.V., Freiman, S.V., Peregud, D.I. et al. Neonatal proinflammatory stress induces accumulation of corticosterone and interleukin-6 in the hippocampus of juvenile rats: Potential mechanism of synaptic plasticity impairments. Biochemistry Moscow 82, 275–281 (2017). https://doi.org/10.1134/S0006297917030051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030051

Keywords

Navigation