Skip to main content
Log in

Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIF:

apoptosis-inducing factor

AMPK:

serine/threonine AMP-activated protein kinase

ARE:

antioxidant responsive element

ASK1:

apoptosis signal-regulating kinase-1

BSO:

buthionine sulfoximine

ERK:

extracellular signal-regulated kinase

γ-GCL:

γ-glutamylcysteine ligase

GPx:

glutathione peroxidase

Grx:

glutaredoxin

GS:

glutathione synthetase

GSH/GSSG:

glutathione reduced/oxidized

GST:

glutathione S-transferase

γ-GT:

γ-glutamyltransferase

JNK:

c-Jun N-terminal kinase

LPO:

lipid peroxidation

MAPK:

mitogen-activated protein kinase

mGSH:

mitochondrial glutathione

nGSH:

nuclear glutathione

OGC:

2-oxyglutarate carrier

PARP:

poly(ADP-ribose)polymerase

Prx:

peroxiredoxin

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

Trx:

thioredoxin

TrxR:

thioredoxin reductase

References

  1. Nagy, P. (2013) Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways, Antioxid. Redox Signal., 18, 1623–1641.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Janssen-Heininger, Y. M., Nolin, J. D., Hoffman, S. M., van der Velden, J. L., Tully, J. E., Lahue, K. G., Abdalla, S. T., Chapman, D. G., Reynaert, N. L., van der Vliet, A., and Anathy, V. (2013) Emerging mechanisms of glutathione-dependent chemistry in biology and disease, J. Cell. Biochem., 114, 1962–1968.

    PubMed  CAS  Google Scholar 

  3. Lu, S. C. (2013) Glutathione synthesis, Biochim. Biophys. Acta, 1830, 3143–3153.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Franco, R., and Cidlowski, J. A. (2009) Apoptosis and glutathione: beyond an antioxidant, Cell Death Different., 16, 1303–1314.

    CAS  Google Scholar 

  5. Deponte, M. (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta, 1830, 3217–3266.

    PubMed  CAS  Google Scholar 

  6. Townsend, D. M., Tew, K. D., and Tapiero, H. (2003) The importance of glutathione in human disease, Biomed. Pharmacother., 57, 145–155.

    PubMed  CAS  Google Scholar 

  7. Grek, C. L., Zhang, J., Manevich, Y., Danyelle, M., Townsend, D. M., and Tew, K. D. (2013) Causes and consequences of cysteine S-glutathionylation, J. Biol. Chem., 288, 26497–26504.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Board, P. G., and Menon, D. (2013) Glutathione transferases, regulators of cellular metabolism and physiology, Biochim. Biophys. Acta, 1830, 3267–3288.

    PubMed  CAS  Google Scholar 

  9. Allen, E. M., and Mieyal, J. J. (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins, Antioxid. Redox Signal., 17, 1748–1763.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Lillig, C. H., and Berndt, C. (2013) Glutaredoxins in thiol/disulfide exchange, Antioxid. Redox Signal., 18, 1654–1665.

    PubMed  CAS  Google Scholar 

  11. Green, R. M., Graham, M., O’Donovan, M. R., Chipman, J. K., and Hodges, N. J. (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity, Mutagenesis, 21, 383–390.

    PubMed  CAS  Google Scholar 

  12. Ookhtens, M., and Kaplowitz, N. (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine, Sem. Liver Dis., 18, 313–329.

    CAS  Google Scholar 

  13. Galano, A., and Alvarez-Idaboy, J. R. (2011) Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals, RSC Adv., 1, 1763–1771.

    CAS  Google Scholar 

  14. Winterbourn, C. C. (1993) Superoxide as an intracellular radical sink, Free Rad. Biol. Med., 14, 85–90.

    PubMed  CAS  Google Scholar 

  15. Ortega, A. L., Mena, S., and Estrela, J. M. (2011) Glutathione in cancer cell death, Cancers, 3, 1285–1310.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Go, Y.-M., and Jones, D. P. (2008) Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta, 1780, 1273–1290.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Jones, D. P. (2006) Redefining oxidative stress, Antioxid. Redox Signal., 8, 1865–1879.

    PubMed  CAS  Google Scholar 

  18. Cai, Z., and Yan, L. J. (2013) Protein oxidative modifications: beneficial roles in disease and health, J. Biochem. Pharmacol. Res., 1, 15–26.

    PubMed Central  PubMed  Google Scholar 

  19. Jacob, C., Battaglia, E., Burkholz, T., Peng, D., Bagrel, D., and Montenarh, M. (2012) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications, Chem. Res. Toxicol., 25, 588–604.

    PubMed  CAS  Google Scholar 

  20. Rhee, S. G., Jeong, W., Chang, T.-S., and Woo, H. A. (2007) Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance, Kidney Int. Suppl., 72, S3–S8.

    Google Scholar 

  21. Fitzpatrick, A. M., Jones, D. P., and Brown, L. A. (2012) Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities, Antioxid. Redox Signal., 17, 375–408.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., and Chiarugi, P. (2006) Redox regulation of beta-actin during integrin-mediated cell adhesion, J. Biol. Chem., 281, 22983–22991.

    PubMed  CAS  Google Scholar 

  23. Qanungo, S., Starke, D. W., Pai, H. V., Mieyal, J. J., and Nieminen, A. L. (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFκΒ, J. Biol. Chem., 282, 18427–18436.

    PubMed  CAS  Google Scholar 

  24. Reynaert, N. L., van der Vliet, A., Guala, A. S., McGovern, T., Hristova, M., Pantano, C., Heintz, N. H., Heim, J., Ho, Y. S., Matthews, D. E., Wouters, E. F., and Janssen-Heininger, Y. M. (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β, Proc. Natl. Acad. Sci. USA, 103, 13086–13091.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Lluis, J. M., Morales, A., Blasco, C., Colell, A., Mari, M., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2005) Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia, J. Biol. Chem., 280, 3224–3232.

    PubMed  CAS  Google Scholar 

  26. Markovic, J., Borras, C., Ortega, A., Sastre, J., Vina, J., and Pallardo, F. V. (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation, J. Biol. Chem., 282, 20416–20424.

    PubMed  CAS  Google Scholar 

  27. Garcia-Gimenez, J. L., Markovic, J., Dasi, F., Queval, G., Schnaubelt, D., Foyer, C. H., and Pallardo, F. V. (2013) Nuclear glutathione, Biochim. Biophys. Acta, 1830, 3304–3316.

    PubMed  CAS  Google Scholar 

  28. Bellomo, G., Palladini, G., and Vairetti, M. (1997) Intranuclear distribution, function and fate of glutathione and glutathione-S-conjugate in living rat hepatocytes studied by fluorescence microscopy, Microsc. Res. Techn., 36, 243–252.

    CAS  Google Scholar 

  29. Ho, Y. F., and Guenthner, T. M. (1994) Uptake and biosynthesis of glutathione by isolated hepatic nuclei, Toxicologist, 14, 178.

    Google Scholar 

  30. Voehringer, D. W., McConkey, D. J., McDonnell, T. J., Brisbay, S., and Meyn, R. E. (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus, Proc. Natl. Acad. Sci. USA, 95, 2956–2960.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Zimmermann, A. K., Loucks, F. A., Schroeder, E. K., Bouchard, R. J., Tyler, K. L., and Linseman, D. A. (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria, J. Biol. Chem., 282, 29296–29304.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Carpenter, G., and Cohen, S. (1990) Epidermal growth factor, J. Biol. Chem., 265, 7709–7712.

    PubMed  CAS  Google Scholar 

  33. Jang, J. H., and Surh, Y. J. (2003) Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function, Biochem. Pharmacol., 66, 1371–1379.

    PubMed  CAS  Google Scholar 

  34. Schafer, F. Q., and Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Rad. Biol. Med., 30, 1191–1212.

    PubMed  CAS  Google Scholar 

  35. Soboll, S., Grundel, S., Harris, J., Kolb-Bachofen, V., Ketterer, B., and Sies, H. (1995) The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation, Biochem. J., 311(Pt. 3), 889–894.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Conrad, M., Moreno, S. G., Sinowatz, F., Ursini, F., Kolle, S., Roveri, A., Brielmeier, M., Wurst, W., Maiorino, M., and Bornkamm, G. W. (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability, Mol. Cell. Biol., 25, 7637–7644.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Pujari, G., Berni, A., Palitti, F., and Chatterjee, A. (2009) Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes, Mutat. Res., 675, 23–28.

    PubMed  CAS  Google Scholar 

  38. Berger, F., Ramirez-Hernandez, M. H., and Ziegler, M. (2004) The new life of a centenarian: signaling functions of NAD(P), Trends Biochem. Sci., 29, 111–118.

    PubMed  CAS  Google Scholar 

  39. Pellny, T. K., Locato, V., Vivancos, P. D., Markovic, J., De Gara, L., Pallardo, F. V., and Foyer, C. H. (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly(ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture, Mol. Plant, 2, 442–456.

    PubMed  CAS  Google Scholar 

  40. Garcia-Gimenez, J. L., Ledesma, A. M., Esmoris, I., Roma-Mateo, C., Sanz, P., Vina, J., and Pallardo, F. V. (2012) Histone carbonylation occurs in proliferating cells, Free Rad. Biol. Med., 52, 1453–1464.

    PubMed  CAS  Google Scholar 

  41. Cadenas, E., and Davies, K. J. (2000) Mitochondrial free radical generation, oxidative stress, and aging, Free Rad. Biol. Med., 29, 222–230.

    PubMed  CAS  Google Scholar 

  42. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2009) Mitochondrial glutathione, a key survival antioxidant, Antioxid. Redox Signal., 11, 2685–2700.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Cole-Ezea, P., Swan, D., Shanley, D., and Hesketh, J. (2012) Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells, Free Rad. Biol. Med., 53, 488–497.

    PubMed  CAS  Google Scholar 

  44. Liang, H., Ran, Q., Jang, Y. C., Holstein, D., Lechleiter, J., McDonald-Marsh, T., Musatov, A., Song, W., Van Remmen, H., and Richardson, A. (2009) Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria, Free Rad. Biol. Med., 47, 312–320.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., Kaplowitz, N., and Fernandez-Checa, J. C. (2013) Mitochondrial glutathione: features, regulation and role in disease, Biochim. Biophys. Acta, 1830, 3317–3328.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Johansson, C., Lillig, C. H., and Holmgren, A. (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase, J. Biol. Chem., 279, 7537–7543.

    PubMed  CAS  Google Scholar 

  47. Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J. P. (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin, Antioxid. Redox Signal., 15, 817–829.

    PubMed  CAS  Google Scholar 

  48. Zhang, H., Go, Y. M., and Jones, D. P. (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress, Arch. Biochem. Biophys., 465, 119–126.

    PubMed  CAS  Google Scholar 

  49. Taylor, E. R., Hurrell, F., Shannon, R. J., Lin, T. K., Hirst, J., and Murphy, M. P. (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation, J. Biol. Chem., 278, 19603–19610.

    PubMed  CAS  Google Scholar 

  50. Beer, S. M., Taylor, E. R., Brown, S. E., Dahm, C. C., Costa, N. J., Runswick, M. J., and Murphy, M. P. (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense, J. Biol. Chem., 279, 47939–47951.

    PubMed  CAS  Google Scholar 

  51. Hurd, T. R., Requejo, R., Filipovska, A., Brown, S., Prime, T. A., Robinson, A. J., Fearnley, I. M., and Murphy, M. P. (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys531 and Cys704 of the 75-kDa subunit: potential role of Cys residues in decreasing oxidative damage, J. Biol. Chem., 283, 24801–24815.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Mailloux, R. J., Jin, X., and Willmore, W. G. (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions, Redox Biol., 2, 123–139.

    PubMed Central  PubMed  Google Scholar 

  53. Tretter, L., and Adam-Vizi, V. (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress, J. Neurosci., 20, 8972–8979.

    PubMed  CAS  Google Scholar 

  54. Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. (2000) The alpha-ketoglutarate dehydrogenase complex in neurodegeneration, Neurochem. Int., 36, 97–112.

    PubMed  CAS  Google Scholar 

  55. Cazanave, S., Berson, A., Haouzi, D., Vadrot, N., Fau, D., Grodet, A., Letteron, P., Feldmann, G., El-Benna, J., Fromenty, B., Robin, M. A., and Pessayre, D. (2007) High hepatic glutathione stores alleviate Fas-induced apoptosis in mice, J. Hepatol., 46, 858–868.

    PubMed  CAS  Google Scholar 

  56. Aoyama, K., Watabe, M., and Nakaki, T. (2012) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18, Amino Acids, 42, 163–169.

    PubMed  CAS  Google Scholar 

  57. Thompson, J. A., and Franklin, C. C. (2009) Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis, Toxicol. Lett., 193, 33–40.

    PubMed Central  PubMed  Google Scholar 

  58. Pias, E. K., and Aw, T. Y. (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells, Cell Death Different., 9, 1007–1016.

    CAS  Google Scholar 

  59. Pias, E. K., and Aw, T. Y. (2002) Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production, FASEB J., 16, 781–790.

    PubMed  CAS  Google Scholar 

  60. Wang, T. G., Gotoh, Y., Jennings, M. H., Rhoads, C. A., and Aw, T. Y. (2000) Lipid hydroperoxide-induced apoptosis in human colonic CaCo-2 cells is associated with an early loss of cellular redox balance, FASEB J., 14, 1567–1576.

    PubMed  CAS  Google Scholar 

  61. Ekshyyan, O., and Aw, T. Y. (2005) Decreased susceptibility of differentiated PC12 cells to oxidative challenge: relationship to cellular redox and expression of apoptotic protease activator factor-1, Cell Death Different., 12, 1066–1077.

    CAS  Google Scholar 

  62. Okouchi, M., Okayama, N., and Aw, T. Y. (2005) Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox, Curr. Neurovasc. Res., 2, 13–22.

    PubMed  CAS  Google Scholar 

  63. Runchel, C., Matsuzawa, A., and Ichijo, H. (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses, Antioxid. Redox Signal., 15, 205–218.

    PubMed  CAS  Google Scholar 

  64. Kyriakis, J. M., and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol. Rev., 81, 807–869.

    PubMed  CAS  Google Scholar 

  65. Circu, M. L., and Aw, T. Y. (2010) Reactive oxygen species, cellular redox systems, and apoptosis, Free Rad. Biol. Med., 48, 749–762.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Lu, G. D., Shen, H. M., Chung, M. C., and Ong, C. N. (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells, Carcinogenesis, 28, 1937–1945.

    PubMed  CAS  Google Scholar 

  67. Cuadrado, A., Garcia-Fernandez, L. F., Gonzalez, L., Suarez, Y., Losada, A., Alcaide, V., Martinez, T., Fernandez-Sousa, J. M., Sanchez-Puelles, J. M., and Munoz, A. (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK, J. Biol. Chem., 278, 241–250.

    PubMed  CAS  Google Scholar 

  68. Ji, L., Shen, K., Jiang, P., Morahan, G., and Wang, Z. (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells, Mol. Carcinogen., 50, 580–591.

    CAS  Google Scholar 

  69. Filomeni, G., Rotilio, G., and Ciriolo, M. R. (2003) Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway, FASEB J., 17, 64–66.

    PubMed  CAS  Google Scholar 

  70. Filomeni, G., Aquilano, K., Civitareale, P., Rotilio, G., and Ciriolo, M. R. (2005) Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells, Free Rad. Biol. Med., 39, 345–354.

    PubMed  CAS  Google Scholar 

  71. Piccirillo, S., Filomeni, G., Brune, B., Rotilio, G., and Ciriolo, M. R. (2009) Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells, J. Biol. Chem., 284, 27721–27733.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Filomeni, G., Piccirillo, S., Rotilio, G., and Ciriolo, M. R. (2012) p38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y, Biochem. Pharmacol., 83, 1349–1357.

    PubMed  CAS  Google Scholar 

  73. Cross, J. V., and Templeton, D. J. (2004) Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain, Biochem. J., 381, 675–683.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Ghosh, S., Pulinilkunnil, T., Yuen, G., Kewalramani, G., An, D., Qi, D., Abrahani, A., and Rodrigues, B. (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion, Am. J. Physiol. Heart Circ. Physiol., 289, H768–H776.

    Google Scholar 

  75. Armstrong, J. S., Steinauer, K. K., Hornung, B., Irish, J. M., Lecane, P., Birrell, G. W., Peehl, D. M., and Knox, S. J. (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line, Cell Death Different., 9, 252–263.

    CAS  Google Scholar 

  76. Mari, M., Colell, A., Morales, A., Caballero, F., Moles, A., Fernandez, A., Terrones, O., Basanez, G., Antonsson, B., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2008) Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-κB activation, Gastroenterology, 134, 1507–1520.

    PubMed  CAS  Google Scholar 

  77. Circu, M. L., Rodriguez, C., Maloney, R., Moyer, M. P., and Aw, T. Y. (2008) Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis, Free Rad. Biol. Med., 44, 768–778.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Martins, N. M., Santos, N. A., Curti, C., Bianchi, M. L., and Santos, A. C. (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver, J. Appl. Toxicol., 28, 337–344.

    PubMed  CAS  Google Scholar 

  79. Santos, N. A., Catao, C. S., Martins, N. M., Curti, C., Bianchi, M. L., and Santos, A. C. (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria, Arch. Toxicol., 81, 495–504.

    PubMed  CAS  Google Scholar 

  80. Chen, G., Chen, Z., Hu, Y., and Huang, P. (2011) Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by beta-phenethyl isothiocyanate: mechanisms for anti-leukemia activity, Antioxid. Redox Signal., 15, 2911–2921.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Chernyak, B. V., and Bernardi, P. (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Europ. J. Biochem., 238, 623–630.

    PubMed  CAS  Google Scholar 

  82. Costantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P. (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem., 271, 6746–6751.

    PubMed  CAS  Google Scholar 

  83. Aon, M. A., Cortassa, S., Maack, C., and O’Rourke, B. (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status, J. Biol. Chem., 282, 21889–21900.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Wu, B., and Dong, D. (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery, Trends Pharmacol. Sci., 33, 656–668.

    PubMed  CAS  Google Scholar 

  85. Hayes, J. D., Flanagan, J. U., and Jowsey, I. R. (2005) Glutathione transferases, Ann. Rev. Pharmacol. Toxicol., 45, 51–88.

    CAS  Google Scholar 

  86. Tew, K. D., and Townsend, D. M. (2012) Glutathione-S-transferases as determinants of cell survival and death, Antioxid. Redox Signal., 17, 1728–1737.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Kulinskii, V. I. (1999) Detoxification of xenobiotics, Soros Ed. J., 1, 8–12.

    Google Scholar 

  88. Krajewski, M. P., Kanawati, B., Fekete, A., Kowalski, N., Schmitt-Kopplin, P., and Grill, E. (2013) Analysis of Arabidopsis glutathione-transferases in yeast, Phytochemistry, 91, 198–207.

    PubMed  CAS  Google Scholar 

  89. Ladner, J. E., Parsons, J. F., Rife, C. L., Gilliland, G. L., and Armstrong, R. N. (2004) Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1, Biochemistry, 43, 352–361.

    PubMed  CAS  Google Scholar 

  90. Jakobsson, P.-J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., and Persson, B. (1999) Common structural features of MAPEG — a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism, Protein Sci., 8, 689–692.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Morel, F., and Aninat, C. (2011) The glutathione transferase kappa family, Drug Metab. Rev., 43, 281–291.

    PubMed  CAS  Google Scholar 

  92. Mandal, A. K., Skoch, J., Bacshai, B. J., Hyman, B. T., Christmas, P., Miller, D., Yamin, T. T., Xu, S., Wisniewski, D., Evans, J. F., and Soberman, R. J. (2004) The membrane organization of leukotriene synthesis, Proc. Natl. Acad. Sci. USA, 101, 6587–6592.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Oakley, A. (2011) Glutathione transferases: a structural perspective, Drug Metab. Rev., 43, 138–151.

    PubMed  CAS  Google Scholar 

  94. Prabhu, K. S., Reddy, P. V., Jones, E. C., Liken, A. D., and Reddy, C. C. (2004) Characterization of a class alpha glutathione S-transferase with glutathione peroxidase activity in human liver microsomes, Arch. Biochem. Biophys., 424, 72–80.

    PubMed  CAS  Google Scholar 

  95. Hiratsuka, A., Yamane, H., Yamazaki, S., Ozawa, N., and Watabe, T. (1997) Subunit Ya-specific glutathione peroxidase activity toward cholesterol 7-hydroperoxides of glutathione S-transferases in cytosols from rat liver and skin, J. Biol. Chem., 272, 4763–4769.

    PubMed  CAS  Google Scholar 

  96. Hubatsch, I., Ridderstrom, M., and Mannervik, B. (1998) Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation, Biochem. J., 330, 175–179.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Dagnino-Subiabre, A., Cassels, B. K., Baez, S., Johansson, A. S., Mannervik, B., and Segura-Aguilar, J. (2000) Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones, Biochem. Biophys. Res. Commun., 274, 32–36.

    PubMed  CAS  Google Scholar 

  98. Manevich, Y., Feinstein, S., and Fisher, A. B. (2004) Activation of the antioxidant enzyme 1-Cys peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST, Proc. Natl. Acad. Sci. USA, 101, 3780–3785.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R., Sardana, M., Henderson, C. J., Wolf, C. R., Davis, R. J., and Ronai, Z. (1999) Regulation of JNK signaling by GSTp, EMBO J., 18, 1321–1334.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., Jiang, Y., and Yin, Z. (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals, Oncogene, 25, 5787–5800.

    PubMed  CAS  Google Scholar 

  101. Sharma, A., Patrick, B., Li, J., Sharma, R., Jeyabal, P. V., Reddy, P. M., Awasthi, S., and Awasthi, Y. C. (2006) Glutathione S-transferases as antioxidant enzymes: small cell lung cancer (H69) cells transfected with hGSTA1 resist doxorubicin-induced apoptosis, Arch. Biochem. Biophys., 452, 165–173.

    PubMed  CAS  Google Scholar 

  102. Dorion, S., Lambert, H., and Landry, J. (2002) Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1, J. Biol. Chem., 277, 30792–30797.

    PubMed  CAS  Google Scholar 

  103. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y. (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways, Science, 275, 90–94.

    PubMed  CAS  Google Scholar 

  104. Lindahl, M., Mata-Cabana, A., and Kieselbach, T. (2011) The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance, Antioxid. Redox Signal., 14, 2581–2642.

    PubMed  CAS  Google Scholar 

  105. Townsend, D. M., Manevich, Y., He, L., Hutchens, S., Pazoles, C. J., and Tew, K. D. (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-glutathionylation following oxidative and nitrosative stress, J. Biol. Chem., 284, 436–445.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Ralat, L. A., Misquitta, S. A., Manevich, Y., Fisher, A. B., and Colman, R. F. (2008) Characterization of the complex of glutathione S-transferase pi and 1-cysteine peroxiredoxin, Arch. Biochem. Biophys., 474, 109–118.

    PubMed  CAS  Google Scholar 

  107. Pettigrew, N. E., and Colman, R. F. (2001) Heterodimers of glutathione S-transferase can form between isoenzyme, Arch. Biochem. Biophys., 396, 225–230.

    PubMed  CAS  Google Scholar 

  108. Tew, K. D., Manevich, Y., Grek, C., Xiong, Y., Uys, J., and Townsend, D. M. (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer, Free Rad. Biol. Med., 51, 299–313.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Ralat, L. A., Manevich, Y., Fisher, A. B., and Colman, R. F. (2006) Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes, Biochemistry, 45, 360–372.

    PubMed  CAS  Google Scholar 

  110. Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature Rev. Mol. Cell Biol., 13, 251–262.

    CAS  Google Scholar 

  111. Klaus, A., Zorman, S., Berthier, A., Polge, C., Ramirez, S., Michelland, S., Seve, M., Vertommen, D., Rider, M., Lentze, N., Auerbach, D., and Schlattner, U. (2013) Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro, PLoS One, 8, e62497.

    Google Scholar 

  112. Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N., Macaulay, S. L., and Kemp, B. E. (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK), Proc. Natl. Acad. Sci. USA, 107, 19237–19241.

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Zmijewski, J. W., Banerjee, S., Bae, H., Friggeri, A., Lazarowski, E. R., and Abraham, E. (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J. Biol. Chem., 285, 33154–33164.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M., and Hardie, D. G. (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab., 11, 554–565.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Zou, M. H., Kirkpatrick, S. S., Davis, B. J., Nelson, J. S., Wiles, W. G., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M. B., and Goldman, M. H. (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species, J. Biol. Chem., 279, 43940–43951.

    PubMed  CAS  Google Scholar 

  116. Xie, Z., Dong, Y., Zhang, M., Cui, M. Z., Cohen, R. A., Riek, U., Neumann, D., Schlattner, U., and Zou, M. H. (2006) Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells, J. Biol. Chem., 281, 6366–6375.

    PubMed  CAS  Google Scholar 

  117. Tikhanovich, I., Cox, J., and Weinman, S. A. (2013) Forkhead box class O transcription factors in liver function and disease, J. Gastroenterol. Hepatol., 28,Suppl. 1, 125–131.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Colombo, S. L., and Moncada, S. (2009) ΑΜPΚα1 regulates the antioxidant status of vascular endothelial cells, Biochem. J., 421, 163–169.

    PubMed  CAS  Google Scholar 

  119. Wang, S., Dale, G. L., Song, P., Viollet, B., and Zou, M. H. (2010) ΑΜPΚα1 deletion shortens erythrocyte life span in mice: role of oxidative stress, J. Biol. Chem., 285, 19976–19985.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Gree, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., and Brunet, A. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem., 282, 30107–30119.

    Google Scholar 

  121. Xie, Z., Zhang, J., Wu, J., Viollet, B., and Zou, M. H. (2008) Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes, Diabetes, 57, 3222–3230.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Usatyuk, P. V., and Natarajan, V. (2004) Role of mitogenactivated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells, J. Biol. Chem., 279, 11789–11797.

    PubMed  CAS  Google Scholar 

  123. Zarkovic, N., Ilic, Z., Jurin, M., Schaur, R. J., Puhl, H., and Esterbauer, H. (1993) Stimulation of HeLa cell growth by physiological concentrations of 4-hydroxynonenal, Cell Biochem. Function, 11, 279–286.

    CAS  Google Scholar 

  124. Pizzimenti, S., Barrera, G., Dianzani, M. U., and Brusselbach, S. (1999) Inhibition of D1, D2, and A-cyclin expression in HL-60 cells by the lipid peroxidation product 4-hydroxynonenal, Free Rad. Biol. Med., 26, 1578–1586.

    PubMed  CAS  Google Scholar 

  125. Barrera, G., Pizzimenti, S., Laurora, S., Moroni, E., Giglioni, B., and Dianzani, M. U. (2002) 4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells, Biochem. Biophys. Res. Commun., 295, 267–275.

    PubMed  CAS  Google Scholar 

  126. He, N. G., Singhal, S. S., Srivastava, S. K., Zimniak, P., Awasthi, Y. C., and Awasthi, S. (1996) Transfection of a 4-hydroxynonenal metabolizing glutathione S-transferase isozyme, mouse GSTA4-4, confers doxorubicin resistance to Chinese hamster ovary cells, Arch. Biochem. Biophys., 333, 214–220.

    PubMed  CAS  Google Scholar 

  127. Gallagher, E. P., Gardner, J. L., and Barber, D. S. (2006) Several glutathione S-transferase isozymes that protect against oxidative injury are expressed in human liver mitochondria, Biochem. Pharmacol., 71, 1619–1628.

    PubMed  CAS  Google Scholar 

  128. Gallagher, E. P., and Gardner, J. L. (2002) Comparative expression of two alpha class glutathione S-transferases in human adult and prenatal liver tissues, Biochem. Pharmacol., 63, 2025–2036.

    PubMed  CAS  Google Scholar 

  129. Raza, H. (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease, FEBS J., 278, 4243–4251.

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Desmots, F., Rissel, M., Gilot, D., Lagadic-Gossmann, D., Morel, F., Guguen-Guillouzo, C., Guillouzo, A., and Loyer, P. (2002) Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes, J. Biol. Chem., 277, 17892–17900.

    PubMed  CAS  Google Scholar 

  131. Curtis, J. M., Grimsrud, P. A., Wright, W. S., Xu, X., Foncea, R. E., Graham, D. W., Brestoff, J. R., Wiczer, B. M., Ilkayeva, O., Cianflone, K., Muoio, D. E., Arriaga, E. A., and Bernlohr, D. A. (2010) Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction, Diabetes, 59, 1132–1142.

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Hyman, S. E., Malenka, R. C., and Nestler, E. J. (2006) Neural mechanisms of addiction: the role of reward-related learning and memory, Ann. Rev. Neurosci., 29, 565–598.

    PubMed  CAS  Google Scholar 

  133. Kalivas, P. W., and O’Brien, C. (2008) Drug addiction as a pathology of staged neuroplasticity, Neuropsychopharmacology, 33, 166–180.

    PubMed  CAS  Google Scholar 

  134. Klatt, P., and Lamas, S. (2002) c-Jun regulation by S-glutathionylation, Methods Enzymol., 348, 157–174.

    PubMed  CAS  Google Scholar 

  135. Humphries, K. M., Deal, M. S., and Taylor, S. S. (2005) Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification, J. Biol. Chem., 280, 2750–2758.

    PubMed  CAS  Google Scholar 

  136. Uys, J. D., Knackstedt, L., Hurt, P., Tew, K. D., Manevich, Y., Hutchens, S., Townsend, D. M., and Kalivas, P. W. (2011) Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity, Neuropsychopharmacolgy, 36, 2551–2560.

    CAS  Google Scholar 

  137. Sun, K. H., Chang, K. H., Clawson, S., Ghosh, S., Mirzaei, H., Regnier, F., and Shah, K. (2011) Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity, J. Neurochem., 118, 902–914.

    PubMed  CAS  Google Scholar 

  138. Castro-Caldas, M., Carvalho, A. N., Rodrigues, E., Henderson, C., Wolf, C. R., and Gama, M. J. (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway, Mol. Neurobiol., 45, 466–477.

    PubMed  CAS  Google Scholar 

  139. McIlwain, C. C., Townsend, D. M., and Tew, K. D. (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy, Oncogene, 25, 1639–1648.

    PubMed  CAS  Google Scholar 

  140. Davis, Jr. W., Ronai, Z., and Tew, K. D. (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis, J. Pharmacol. Exp. Therap., 296, 1–6.

    CAS  Google Scholar 

  141. Hayes, J. D., and Pulford, D. J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance, Crit. Rev. Biochem. Mol. Biol., 30, 445–600.

    PubMed  CAS  Google Scholar 

  142. Higgins, L. G., and Hayes, J. D. (2011) Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents, Drug Metab. Rev., 43, 92–137.

    PubMed  CAS  Google Scholar 

  143. Pool-Zobel, B., Veeriah, S., and Bohmer, F. D. (2005) Modulation of xenobiotic metabolizing enzymes by anticarcinogens — focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis, Mutat. Res., 591, 74–92.

    PubMed  CAS  Google Scholar 

  144. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J. D. (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex, J. Biol. Chem., 281, 24756–24768.

    PubMed  CAS  Google Scholar 

  145. Alves, R., Vilaprinyo, E., Sorribas, A., and Herrero, E. (2009) Evolution based on domain combinations: the case of glutaredoxins, BMC Evol. Biol., 9, artical 66.

    PubMed Central  PubMed  Google Scholar 

  146. Rouhier, N. (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulfur center assembly, New Phytol., 186, 365–372.

    PubMed  CAS  Google Scholar 

  147. Lillig, C. H., Berndt, C., and Holmgren, A. (2008) Glutaredoxin systems, Biochim. Biophys. Acta, 1780, 1304–1317.

    PubMed  CAS  Google Scholar 

  148. Johansson, C., Roos, A. K., Montano, S. J., Sengupta, R., Filippakopoulos, P., Guo, K., von Delft, F., Holmgren, A., Oppermann, U., and Kavanagh, K. L. (2011) The crystal structure of human GLRX5: iron-sulfur cluster coordination, tetrameric assembly and monomer activity, Biochem. J., 433, 303–311.

    PubMed  CAS  Google Scholar 

  149. Couturier, J., Jacquot, J. P., and Rouhier, N. (2009) Evolution and diversity of glutaredoxins in photosynthetic organisms, Cell. Mol. Life Sci., 66, 2539–2557.

    PubMed  CAS  Google Scholar 

  150. Benyamina, S. M., Baldacci-Cresp, F., Couturier, J., Chibani, K., Hopkins, J., Bekki, A., de Lajudie, P., Rouhier, N., Jacquot, J. P., Alloing, G., Puppo, A., and Frendo, P. (2013) Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation, Environ. Microbiol., 15, 795–810.

    PubMed  CAS  Google Scholar 

  151. Xing, S., Lauri, A., and Zachgo, S. (2006) Redox regulation and flower development: a novel function for glutaredoxins, Plant Biol., 8, 547–555.

    PubMed  CAS  Google Scholar 

  152. Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C., and Lillig, C. H. (2013) Thioredoxins, glutaredoxins, and peroxiredoxins — molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling, Antioxid. Redox Signal., 19, 1539–1605.

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Lundberg, M., Fernandes, A. P., Kumar, S., and Holmgren, A. (2004) Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systems, Biochem. Biophys. Res. Commun., 319, 801–809.

    PubMed  CAS  Google Scholar 

  154. Lonn, M. E., Hudemann, C., Berndt, C., Cherkasov, V., Capani, F., Holmgren, A., and Lillig, C. H. (2008) Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms, Antioxid. Redox Signal., 10, 547–557.

    PubMed  Google Scholar 

  155. Gallogly, M. M., Starke, D. W., and Mieyal, J. J. (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation, Antioxid. Redox Signal., 11, 1059–1081.

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Stroher, E., and Millar, A. H. (2012) The biological roles of glutaredoxins, Biochem. J., 446, 333–348.

    PubMed  Google Scholar 

  157. Watson, W. H., Chen, Y., and Jones, D. P. (2003) Redox state of glutathione and thioredoxin in differentiation and apoptosis, Biofactors, 17, 307–314.

    PubMed  CAS  Google Scholar 

  158. Aslund, F., Berndt, K. D., and Holmgren, A. (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria, J. Biol. Chem., 272, 30780–30786.

    PubMed  CAS  Google Scholar 

  159. Starke, D. W., Chock, P. B., and Mieyal, J. J. (2003) Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction, J. Biol. Chem., 278, 14607–14613.

    PubMed  CAS  Google Scholar 

  160. Ruoppolo, M., Lundstrom-Ljung, J., Talamo, F., Pucci, P., and Marino, G. (1997) Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A, Biochemistry, 36, 12259–12267.

    PubMed  CAS  Google Scholar 

  161. Lillig, C. H., Berndt, C., Vergnolle, O., Lonn, M. E., Hudemann, C., Bill, E., and Holmgren, A. (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor, Proc. Natl. Acad. Sci. USA, 102, 8168–8173.

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Riondet, C., Desouris, J. P., Montoya, J. G., Chartier, Y., Meyer, Y., and Reichheld, J.-P. (2012) A dicotyledon-specific glutaredoxin GRXC1 family with dimer-dependent redox regulation is functionally redundant with GRXC2, Plant Cell Environ., 35, 360–373.

    PubMed  CAS  Google Scholar 

  163. Feng, Y. G., Zhong, N., Rouhier, N., Hase, T., Kusunoki, M., Jacquot, J. P., Jin, C. W., and Xia, B. (2006) Structural insight into poplar glutaredoxin C1 with a bridging ironsulfur cluster at the active site, Biochemistry, 45, 7998–8008.

    PubMed  CAS  Google Scholar 

  164. Berndt, C., Hudemann, C., Hanschmann, E.-M., Axelsson, R., Holmgren, A., and Lillig, C. H. (2007) How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid. Redox Signal., 9, 151–157.

    PubMed  CAS  Google Scholar 

  165. Mitra, S., and Elliott, S. J. (2009) Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria, Biochemistry, 48, 3813–3815.

    PubMed  CAS  Google Scholar 

  166. Johansson, C., Kavanagh, K. L., Gileadi, O., and Oppermann, U. (2007) Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria, J. Biol. Chem., 282, 3077–3082.

    PubMed  CAS  Google Scholar 

  167. Zhang, H., Du, Y., Zhang, X., Lu, J., and Holmgren, A. (2014) Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal, Antioxid. Redox Signal., in press.

    Google Scholar 

  168. Muhlenhoff, U., Molik, S., Godoy, J. R., Uzarska, M. A., Richter, N., Seubert, A., Zhang, Y., Stubbe, J., Pierrel, F., Herrero, E., Lillig, C. H., and Lill, R. (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster, Cell Metab., 12, 373–385.

    PubMed  Google Scholar 

  169. Linares, G. R., Xing, W., Govoni, K. E., Chen, S. T., and Mohan, S. (2009) Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress, Bone, 44, 795–804.

    PubMed  CAS  Google Scholar 

  170. Xia, T. H., Bushweller, J. H., Sodano, P., Billeter, M., Bjornberg, O., Holmgren, A., and Wuthrich, K. (1992) NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins, Protein Sci., 1, 310–321.

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Wang, Y., Amegbey, G., and Wishart, D. S. (2004) Solution structures of reduced and oxidized bacteriophage T4 glutaredoxin, J. Biomol. NMR, 29, 85–90.

    PubMed  Google Scholar 

  172. Bushweller, J. H., Billeter, M., Holmgren, A., and Wuthrich, K. (1994) The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin (C14S) and glutathione, J. Mol. Biol., 235, 1585–1597.

    PubMed  CAS  Google Scholar 

  173. Anathy, V., Aesif, S. W., Guala, A. S., Havermans, M., Reynaert, N. L., Ho, Y. S., Budd, R. C., and Janssen-Heininger, Y. M. (2009) Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J. Cell Biol., 184, 241–252.

    PubMed Central  PubMed  CAS  Google Scholar 

  174. Huang, Z., Pinto, J. T., Deng, H., and Richie, J. P., Jr. (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation, Biochem. Pharmacol., 75, 2234–2244.

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Allen, E. M., and Mieyal, J. J. (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins, Antioxid. Redox Signal., 17, 1748–1763.

    PubMed Central  PubMed  CAS  Google Scholar 

  176. Song, J. J., Rhee, J. G., Suntharalingam, M., Walsh, S. A., Spitz, D. R., and Lee, Y. J. (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2, J. Biol. Chem., 277, 46566–46575.

    PubMed  CAS  Google Scholar 

  177. Sparaco, M., Gaeta, L. M., Santorelli, F. M., Passarelli, C., Tozzi, G., Bertini, E., Simonati, A., Scaravilli, F., Taroni, F., Duyckaerts, C., Feleppa, M., and Piemonte, F. (2009) Friedreich’s ataxia: oxidative stress and cytoskeletal abnormalities, J. Neurol. Sci., 287, 111–118.

    PubMed  CAS  Google Scholar 

  178. Johansson, M., and Lundberg, M. (2007) Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary, BMC Biochem., 8, 26.

    PubMed Central  PubMed  Google Scholar 

  179. Shi, Q., Xu, H., Kleinman, W. A., and Gibson, G. E. (2008) Novel functions of the α-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer’s disease, Biochim. Biophys. Acta, 1782, 229–238.

    PubMed Central  PubMed  CAS  Google Scholar 

  180. Di Domenico, F., Cenini, G., Sultana, R., Perluigi, M., Uberti, D., Memo, M., and Butterfield, D. A. (2009) Glutathionylation of the pro-apoptotic protein p53 in Alzheimer’s disease brain: implications for AD pathogenesis, Neurochem. Res., 34, 727–733.

    PubMed Central  PubMed  Google Scholar 

  181. Sampathkumar, R., Balasubramanyam, M., Sudarslal, S., Rema, M., Mohan, V., and Balaram, P. (2005) Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy, Clin. Biochem., 38, 892–899.

    PubMed  CAS  Google Scholar 

  182. Shelton, M. D., Kern, T. S., and Mieyal, J. J. (2007) Glutaredoxin regulates nuclear factor κB and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy, J. Biol. Chem., 282, 12467–12474.

    PubMed  CAS  Google Scholar 

  183. Craghill, J., Cronshaw, A. D., and Harding, J. J. (2004) The identification of a reaction site of glutathione mixed disulphide formation on ΓS-crystallin in human lens, Biochem. J., 379, 595–600.

    PubMed Central  PubMed  CAS  Google Scholar 

  184. Zhang, S., Chai, F. Y., Yan, H., Guo, Y., and Harding, J. J. (2008) Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats, Mol. Vision, 14, 862–870.

    CAS  Google Scholar 

  185. Velu, C. S., Niture, S. K., Doneanu, C. E., Pattabiraman, N., and Srivenugopal, K. S. (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress, Biochemistry, 46, 7765–7780.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kalinina.

Additional information

Original Russian Text © E. V. Kalinina, N. N. Chernov, M. D. Novichkova, 2014, published in Uspekhi Biologicheskoi Khimii, 2014, Vol. 54, pp. 299–348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.V., Chernov, N.N. & Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry Moscow 79, 1562–1583 (2014). https://doi.org/10.1134/S0006297914130082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914130082

Key words

Navigation