Skip to main content
Log in

New findings in studies of cytochromes P450

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytochromes P450 represent a numerous family of heme-containing enzymes belonging to the group of monooxygenases. In prokaryotes, cytochromes P450 usually perform a plastic function, whereas in eukaryotes their functions are very diverse. Mammalian cytochromes P450 are components of membranes and are involved in biosynthesis and metabolism of many physiologically active substances; moreover, these cytochromes are unique in their ability to catalyze biotransformation of xenobiotics, i.e. metabolize substances of foreign origin (drugs, toxins, environmental pollutants). The latter promotes elimination of xenobiotics, but sometimes intermediates of their metabolism are even more toxic and dangerous than the original xenobiotics per se. Some catalytic features of cytochromes P450 still need unambiguous explanation, i.e. broad substrate specificity, diversity of catalytic reactions, and unusual kinetics. Under some conditions cytochromes P450 can produce reactive oxygen species, and this is another problem attracting increasing attention. In this respect, a recent finding in mitochondria of analogs of microsomal cytochromes P450 seems especially intriguing; it was postulated that P450 can be responsible for mitochondrial dysfunction, cell apoptosis, and pathogenesis of some diseases. In this paper the present state of the art concerning these problems is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSO:

buthionine sulfoximine

CYP:

cytochrome P450

ROS:

reactive oxygen species

References

  1. Klingenberg, M. (1958) Arch. Biochem. Biophys., 75, 376–386.

    Article  PubMed  CAS  Google Scholar 

  2. Garfinkel, D. (1958) Arch. Biochem. Biophys., 77, 493–509.

    Article  PubMed  CAS  Google Scholar 

  3. Omura, T., and Sato, R. (1962) J. Biol. Chem., 237, 1375–1376.

    PubMed  CAS  Google Scholar 

  4. Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.

    PubMed  CAS  Google Scholar 

  5. Omura, T., Sato, R., Cooper, D. Y., Rosenthal, O., and Estabrook, R. W. (1965) Fed. Proc., 24, 1181–1189.

    PubMed  CAS  Google Scholar 

  6. Nebert, D. W., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, W., Levin, W., Phillips, I. R., Sato, R., and Waterman, M. R. (1987) DNA (N. Y.), 6, 1–11.

    CAS  Google Scholar 

  7. Coon, M. J. (2002) J. Biol. Chem., 277, 28351–28363.

    Article  PubMed  CAS  Google Scholar 

  8. Furge, L. L., and Guengerich, F. P. (2006) Biochem. Mol. Biol. Edu., 34, 66–74.

    Article  CAS  Google Scholar 

  9. Yao, H., McCullough, C. R., Costache, A. D., Pulella, P. K., and Sem, D. S. (2007) Proteins, 69, 125–138.

    Article  PubMed  CAS  Google Scholar 

  10. Tsuprun, V. L., Myasoedova, K. N., Berndt, P., Sograf, O. N., Orlova, E. V., Chernyak, V. Ya., Archakov, A. I., and Skulachev, V. P. (1986) FEBS Lett., 205, 35–40.

    Article  PubMed  CAS  Google Scholar 

  11. Myasoedova, K. N., and Tsuprun, V. L. (1993) FEBS Lett., 325, 251–254.

    Article  PubMed  CAS  Google Scholar 

  12. Myasoedova, K. N., and Stel’mashchuk, V. Ya. (2003) Dokl. Ros. Akad. Nauk, 393, 691–694.

    Google Scholar 

  13. Cosme, J., and Johnson, E. F. (2000) J. Biol. Chem., 275, 2545–2553.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, P.A., Cosme, J., Sridhar, V., Johnson, E. F., and McRee, D. E. (2000) Mol. Cell, 5, 121–131.

    Article  PubMed  CAS  Google Scholar 

  15. Scott, E. E., He, Y. A., Wester, M. R., White, M. A., Chin, C. C., Halpert, J. R., Johnson, E. F., and Stout, C. D. (2003) Proc. Natl. Acad. Sci. USA, 100, 13196–13201.

    Article  PubMed  CAS  Google Scholar 

  16. Wester, M. R., Yano, J. K., Schoch, G. A., Yang, C., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 35630–35637.

    Article  PubMed  CAS  Google Scholar 

  17. Schoch, G. A., Yano, J. K., Wester, M. R., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 9497–9503.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., Vonrhein, C., Tickle, I. J., and Jhoti, H. (2004) Science, 305, 683–686.

    Article  PubMed  CAS  Google Scholar 

  19. Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 38091–38094.

    Article  PubMed  CAS  Google Scholar 

  20. Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol., 12, 822–823.

    Article  PubMed  CAS  Google Scholar 

  21. Rowland, P., Blaney, F. E., Smith, M. G., Jones, J. J., Leidon, V. R., Oxbrow, A. K., Lewis, C. J., Tennant, M. J., Modi, S., Egglton, D. S., Chenary, R. J., and Bridges, A. M. (2006) J. Biol. Chem., 281, 7614–7622.

    Article  PubMed  CAS  Google Scholar 

  22. Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, C. C., and Kraut, J. (1985) J. Biol. Chem., 260, 16122–16124.

    PubMed  CAS  Google Scholar 

  23. Poulos, T. L., Finzel, B. C., and Howard, A. I. (1986) Biochemistry, 25, 5314–5322.

    Article  PubMed  CAS  Google Scholar 

  24. Ekroos, M., and Sjogren, T. (2006) Proc. Natl. Acad. Sci. USA, 103, 13682–13687.

    Article  PubMed  CAS  Google Scholar 

  25. Guengerich, F. P. (2006) Proc. Natl. Acad. Sci. USA, 103, 13565–13566.

    Article  PubMed  CAS  Google Scholar 

  26. Harlow, G. R., and Halpert, J. R. (1998) Proc. Natl. Acad. Sci. USA, 95, 6636–6641.

    Article  PubMed  CAS  Google Scholar 

  27. Davidov, D. R., Halpert, J. R., Renaud, J. P., and Hui Bon Hoa, G. (2003) Biochem. Biophys. Res. Commun., 312, 121–130.

    Article  Google Scholar 

  28. Myasoedova, K. N., Arutyunyan, A. M., and Magretova, N. N. (2006) Biosci. Rep., 26, 69–78.

    Article  PubMed  CAS  Google Scholar 

  29. Myasoedova, K. N., Arutyunyan, A. M., and Magretova, N. N. (2007) Dokl. Ros. Akad. Nauk, 415, 262–267.

    Google Scholar 

  30. Scott, E. E., White, M. A., He, Y. A., Johnson, E. F., Stout, C. D., and Halpert, J. R. (2004) J. Biol. Chem., 279, 27294–27301.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao, Y., White, M. A., Muralidhara, B. K., Sun, L., Halpert, J. R., and Stout, C. D. (2006) J. Biol. Chem., 281, 5973–5981.

    Article  PubMed  CAS  Google Scholar 

  32. Muralidhara, B. K., Negi, S., Chin, C. C., Braun, W., and Halpert, J. R. (2006) J. Biol. Chem., 281, 8051–8061.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao, Y., Sun, L., Muralidhara, B. K., Kumar, S., White, M. A., Stout, C. D., and Halpert, J. R. (2007) Biochemistry, 46, 11559–11567.

    Article  PubMed  CAS  Google Scholar 

  34. Isin, E. M., and Guengerich, F. P. (2006) J. Biol. Chem., 281, 9127–9136.

    Article  PubMed  CAS  Google Scholar 

  35. Omura, T. (2006) Chem. Biol. Interact., 163, 86–93.

    Article  PubMed  CAS  Google Scholar 

  36. Skulachev, V. P. (2001) Soros Obrazovat. Zh., 7, 4–9.

    Google Scholar 

  37. Hanucoglu, I., Rapoport, R., Weiner, I., and Sklam, D. (1993) Arch. Biochem. Byophys., 305, 489–498.

    Article  Google Scholar 

  38. Rapoport, R., Sklam, D., and Hanucoglu, I. (1995) Arch. Biochem. Biophys., 317, 412–416.

    Article  PubMed  CAS  Google Scholar 

  39. Anandatheerthavarada, H. K., Addya, S., Dwivedi, H. S., Biswas, G., Mullick, J., and Avadhani, N. G. (1997) Arch. Biochem. Biophys., 339, 136–150.

    Article  PubMed  CAS  Google Scholar 

  40. Center, M. B., Clay, C. D., Dalton, T. P., Dong, H., Nebert, D. W., and Shertzer, H. (2006) Biochem. Biophys. Res. Commun., 342, 1375–1381.

    Article  Google Scholar 

  41. Robin, M. A., Sauvage, I., Grandperret, T., Descatoire, V., Pessayre, D., and Fromenty, B. (2005) FEBS Lett., 579, 6895–6902.

    Article  PubMed  CAS  Google Scholar 

  42. Bai, J., and Cederbaum, A. I. (2006) J. Biol. Chem., 281, 5128–5136.

    Article  PubMed  CAS  Google Scholar 

  43. Addya, S., Anandatheerthavarada, H. K., Biswas, G., Bhagwat, S. V., Mullick, J., and Avadhany, N. G. (1997) J. Cell Biol., 139, 589–599.

    Article  PubMed  CAS  Google Scholar 

  44. Neve, E. P. A., and Ingelman-Sundberg, M. (1999) FEBS Lett., 460, 309–314.

    Article  PubMed  CAS  Google Scholar 

  45. Neve, E. P. A., and Ingelman-Sundberg, M. (2001) J. Biol. Chem., 276, 11317–11322.

    Article  PubMed  CAS  Google Scholar 

  46. Robin, M. A., Anandatheerthavarada, H. K., Fang, J. K., Cudic, M., Otvos, N. G., and Avadhani, N. G. (2001) J. Biol. Chem., 276, 24680–24689.

    Article  PubMed  CAS  Google Scholar 

  47. Robin, M. A., Anandatheerthavarada, H. K., Biswas, G., Babu, N., Sepuri, D. M., Gordon, D. M., Pain, D., and Avadhani, N. G. (2002) J. Biol. Chem., 277, 40583–40593.

    Article  PubMed  CAS  Google Scholar 

  48. Raza, H., Prabu, S. K., Robin, M. A., and Avadhany, N. G. (2004) Diabetes, 53, 185–194.

    Article  PubMed  CAS  Google Scholar 

  49. Fukae, J., Mizuno, Y., and Hattory, N. (2007) Mitochondrion, 7, 58–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Myasoedova.

Additional information

Original Russian Text © K. N. Myasoedova, 2008, published in Biokhimiya, 2008, Vol. 73, No. 9, pp. 1199–1205.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myasoedova, K.N. New findings in studies of cytochromes P450. Biochemistry Moscow 73, 965–969 (2008). https://doi.org/10.1134/S0006297908090022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908090022

Key words

Navigation