Skip to main content
Log in

Quantitative Dynamics of in Vivo Bone Marrow Neutrophil Production and Egress in Response to Injury and Infection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Production rates of blood cells from the bone marrow (BM) can be determined from pool size and residence time in the circulation only during steady state. We describe a method to evaluate changes in BM neutrophil production following severe injury. Male CD-1 mice underwent nonlethal cutaneous burn injury, a lethal burn injury with Pseudomonas aeruginosa infection, or sham treatment, and received bromodeoxyuridine (BrdU) to label proliferative cells. Rates of BM neutrophil production and release into the circulation were determined using a mathematical model that integrates BM neutrophil pool size and fraction of BrdU labeled cells as a function of time. Absolute rates could not be quantified without BrdU data for the neutrophil progenitor pool; however, relative rates could be determined. BM neutrophil production and release significantly increased after injury. After nonlethal burn, release transiently exceeded production, causing a temporary decrease in BM neutrophil stores followed by re-establishment of a steady-state BM neutrophil pool similar to sham controls. After lethal burn infection, release always exceeded production, causing complete depletion of BM neutrophils and suppression of BM neutrophil production. This method is generally applicable to estimating production rates of nonproliferating, terminally differentiated cells, arising from a stem cell pool in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alexander, J.W., C. K. Ogle, J. D. Stinnett, and B. G. Macmillan. Sequential, prospective analysis of immunological abnormalities and infection following severe thermal injury. Ann. Surg .188:809–816, 1978.

    Google Scholar 

  2. Asko-Seljavaara, S. Inhibition of bone-marrowcell-proliferation in burned mice-In vitrostudy of effect of fluid replacement and burn serum on bone-marrow cell-growth. Scand. J. Plast. Reconstr. Surg. Hand Surg .8:192–197, 1974.

    Google Scholar 

  3. Asko-Seljavaara, S. Granulocyte kinetics in burns. J. Burn Care Rehabil. 8:492, 1989.

    Google Scholar 

  4. Babcock, G. F. Predictive medicine: Severe trauma and burns. Cytometry Part B-Clin. Cytometry 53B:48–53, 2003.

    Google Scholar 

  5. Baskaran, H., M. L. Yarmush, and F. Berthiaume. Dynamics of tissue neutrophil sequestration after cutaneous burns in rats. J. Surg. Res. 93:88–96, 2000.

    Article  Google Scholar 

  6. Berkow, R. L., and R. W. Dodson. Purification and functional evaluation of mature neutrophils from human bone marrow. Blood 68:853–860, 1986.

    Google Scholar 

  7. Bernard, S., L. Pujo-Menjouet, and M. C. Mackey. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J. 84:3414–3424, 2003. Marrow Neutrophil Dynamics After Injury and Infection 1119

    Google Scholar 

  8. Bonhoeffer, S., H. Mohri, D. Ho, and A. S. Perelson. Quantification of cell turnover kinetics using 5-bromo-2-deoxyuridine. J. Immunol. 164:5049–5054, 2000.

    Google Scholar 

  9. Cartwright, G. E., J. W. Athens, and M. M. Wintrobe. The kinetics of granulopoiesis in normal man. Blood 24:780–803, 1964.

    Google Scholar 

  10. Chervenick, P. A., D. R. Boggs, J. C. Marsh, G. E. Cartwright, and M. M. Wintrobe. Quantitative studies of blood and bone marrow neutrophils in normal mice. Am. J. Physiol .215:353–360, 1968.

    Google Scholar 

  11. Cline, M. J. The White Cell. Cambridge, MA: Harvard University Press, 1975, 564 pages.

    Google Scholar 

  12. Egerton, M., R. Scollay, and K. Shortman. Kinetics of mature T-cell development in the thymus. Proc. Natl. Acad. Sci. U.S.A. 87:2579–2582, 1990.

    Google Scholar 

  13. Gamelli, R. L., J. C. Hebert, and R. S. Foster. Effect of burn injury on granulocyte and macrophage production. J. Trauma 25:615–619, 1985.

    Google Scholar 

  14. Glasser, L., and R. L. Fiederlein. Functional differentiation of normal human neutrophils. Blood 69:937–944, 1987.

    Google Scholar 

  15. Jagels, M. A., and T. E. Hugli. Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment from bone marrow. J. Immunol. 148:1119–1128, 1992.

    Google Scholar 

  16. Koller, M. R., and B. O. Palsson. Tissue engineering-Reconstitution of human hematopoiesis ex vivo. Biotechnol. Bioeng. 42:909–930, 1993.

    Google Scholar 

  17. Lagasse, E., and I. L. Weissman. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 197:139–150, 1996.

    Article  Google Scholar 

  18. Lichtman, M. A., and R. I. Weed. Alteration in the cell periphery during granulocyte maturation. Relation to function. Blood 39:301, 1972.

    Google Scholar 

  19. Lyons, A., A. Goebel, J. A. Mannick, and J. A. Lederer. Protective effects of early interleukin 10 antagonism on injury-induced immune dysfunction. Arch. Surg.134:1317–1323, 1999.

    Article  Google Scholar 

  20. Mehr, R., A. Globerson, and A. S. Perelson. Modeling positive and negative selection and differentiation processes in the thymus. J. Theor. Biol. 175:103–126, 1995.

    Article  Google Scholar 

  21. Mohri, H. Clinical analysis of acquired von Willebrand syndrome. Blood 98:3960, 2001.

    Google Scholar 

  22. Mohri, H., S. Bonhoeffer, S. Monard, A. S. Perelson, and D. D. Ho. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279:1223–1227, 1998.

    Article  Google Scholar 

  23. Newsome, T. W., and K. Eurenius. Suppression of granulocyte and platelet production by Pseudomonasburn wound infection. Surg. Gynecol. Obstet. 136:375–379, 1973.

    Google Scholar 

  24. Nielsen, L. K., J. G. Bender, W. M. Miller, and E. T. Papoutsakis. Population balance model of in vivoneutrophil formation following bone marrow rescue therapy. Cytotechnology 28:157–162, 1998.

    Article  Google Scholar 

  25. O'Suilleabhain, C., S. T. O'Sullivan, J. L. Kelley, J. Lederer, J. A. Mannick, and R. M. L. Rodrick Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury. Surgery 120:290–296, 1996.

    Google Scholar 

  26. Penit, C., F. Vasseur, and P. M. In vivo dynamics of CD4-CD8-thymocytes. Proliferation, renewal, and differentiation cell subsets studied by DNA biosynthetic labeling and surface antigen detection. Eur. J. Immunol. 18:1343, 1988.

    Google Scholar 

  27. Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902, 1995.

    Google Scholar 

  28. Ribeiro, R. M., H. Mohri, D. D. Ho, and A. S. Perelson. Modeling deuterated glucose labeling of T-lymphocytes. Bull. Math. Biol. 64:385–405, 2002.

    Article  Google Scholar 

  29. Roberts, A. W., S. Foote, W. S. Alexander, C. Scott, L. Robb, and D. Metcalf. Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 89:2736–2744, 1997.

    Google Scholar 

  30. Rocha, B., C. Penit, C. Baron, F. Vasseur, N. Dautigny, and A. A. Freitas. Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs-Minimal estimates of production and turnover rates of mature lymphocytes. Eur. J. Immunol. 20:1697–1708, 1990.

    Google Scholar 

  31. Sato, Y., S. F. Van Eeden, D. English, and J. C. Hogg. Bacteremic pneumoccal pneumonia: Bone release and pulmonary sequestration of polymorphonuclear leukocytes. Crit. Care Med.26:501–509, 1998.

    Google Scholar 

  32. Sato, Y., S. F. Van Eeden, D. English, and J. C. Hogg. Pulmonary sequestration of polymorphonuclear leukocytes released from bone marrow in bacteremic infection. Am. J. Physiol. 275:L255, 1998.

    Google Scholar 

  33. Shoup, M., J. M. Weisenberger, J. L. Wang, J. M. Pyle, R. L. Gamelli, and R. Shankar. Mechanisms of neutropenia involving myeloid maturation arrest in burn sepsis. Ann. Surg. 228:112–122, 1998.

    Article  Google Scholar 

  34. Stevens, E. J., C. M. Ryan, J. S. Friedberg, R. L. Barnhill, M. L. Yarmush, and R. G. Tompkins. A quantitative model of invasive Pseudomonasinfection in burn injury. J. Burn Care Rehabil. 15:232, 1994.

    Google Scholar 

  35. Thoman, M. L. Early steps in T-cell development are affected by aging. Cell. Immunol. 178:117–123, 1997.

    Article  Google Scholar 

  36. Trop, M., E. J. Schiffrin, W. K. Jung, R. J. Callahan, H. W. Strauss, and E. A. Carter. Effect of acute burn trauma on phagocytic activity of the reticuloendothelial system in rats. J. Burn Care Rehabil. 10:388, 1989.

    Google Scholar 

  37. von Boehmer, H., and K. Hafen. The life-span of naive alpha/beta T-cells in secondary lymphoid organs. J. Exp. Med. 177:891–896, 1993.

    Article  Google Scholar 

  38. Wilson, G. D. Analysis of DNA-measurement of cell kinetics by the bromodeoxyuridine/anti-bromodeoxyuridine method. In: Flow Cytometry: A Practical Approach, edited by M. G. Ormerod. Oxford: Oxford University Press, 1994, pp. 137–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosinski, M., Yarmush, M.L. & Berthiaume, F. Quantitative Dynamics of in Vivo Bone Marrow Neutrophil Production and Egress in Response to Injury and Infection. Annals of Biomedical Engineering 32, 1109–1120 (2004). https://doi.org/10.1114/B:ABME.0000036647.81372.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036647.81372.ce

Navigation