Skip to main content
Log in

Biological Basis of Hearing-Aid Design

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We show that we can accurately model the auditory-nerve discharge patterns in response to sounds as complex as speech and ask how we may exploit this knowledge to test new strategies for hearing-aid signal processing. We describe the auditory-nerve representations of vowels in normal and noise-damaged ears. The normal representations are predicted well by a cochlear signal processing model originally developed by Carney (Carney, L. H. J. Acoust. Soc. Am. 93:401–417, 1993). Basilar-membrane tuning is represented by a time-varying narrow-band filter. Outer hair cell control of tuning is exerted by a nonlinear feedback path. We show that the effects of noise-induced outer hair cell damage can be modeled by scaling the feedback signal appropriately and use the model to test one strategy for hearing-aid speech processing. We conclude by discussing some aspects of future trends in biomedical engineering approaches to problems of hearing impairment. © 2002 Biomedical Engineering Society.

PAC2002: 4350-x, 4364Dw, 8780Xa, 4360Bf, 4366Ts, 8719La, 8710+e, 8717Aa, 8716Xa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Blackburn, C. C., and M. B. Sachs. The representations of the steady–state vowel sound / ?/ in the discharge patterns of cat anteroventral cochlear nucleus neurons. J. Neurophysiol. 63:1191–1212, 1990.

    Google Scholar 

  2. Brownell, W. E., C. R. Bader, D. Bertrand, and Y. de Ribaupierre. Evoked mechanical responses of isolated cochlear outer hair cells. Science 227(4683):194–196, 1985.

    Google Scholar 

  3. Carney, L. H. A model for the responses of low–frequency auditory–nerve fibers in cat. J. Acoust. Soc. Am. 93:401–417, 1993.

    Google Scholar 

  4. Corwin, J. T., and J. C. Oberholtzer. Fish n' chicks: Model recipes for hair–cell regeneration? Neuron 19:951–954, 1997.

    Google Scholar 

  5. Dallos, P., R. Hallworth, and B. N. Evans. Theory of electrically driven shape changes of cochlear outer hair cells. J.Neurophysiol. 70:299–323, 1993.

    Google Scholar 

  6. de Boer, E. Mechanics of the cochlea: Modeling efforts. In: The Cochlea, edited by P. Dallos, A. N. Popper, and R. R. Fay. New York: Springer, 1996, pp. 258–317.

    Google Scholar 

  7. Deng, L., and C. D. Geisler. Responses of auditory–nerve fibers to nasal consonant—vowel syllables. J. Acoust. Soc. Am. 82:1977–1988, 1987.

    Google Scholar 

  8. Deng, L., C. D. Geisler, and S. Greenberg. Responses of auditory–nerve fibers to multitone complexes. J. Acoust. Soc. Am. 82:1989–2000, 1987.

    Google Scholar 

  9. Evans, E. F., and J. P. Wilson. The frequency selectivity of the cochlea. In: Basic Mechanisms in Hearing, edited by A. R. Møller. New York: Academic, 1973, pp. 519–554.

    Google Scholar 

  10. Geisler, C. D. From Sound to Synapse: Physiology of the Mammalian Ear. New York: Oxford, 1998.

    Google Scholar 

  11. Helmholtz, H. On the Sensations of Tone. New York: Dover, 1954.

    Google Scholar 

  12. Johnson, D. H. Point process models of single–neuron discharges. J. Comput. Neurosci. 3:275–299, 1996.

    Google Scholar 

  13. Johnson, D. H., and A. Swami. The transmission of signals by auditory–nerve fiber discharge patterns. J. Acoust. Soc. Am. 68:1115–1122, 1980.

    Google Scholar 

  14. Kros, C. J. Physiology of mammalian cochlear hair cells. In: The Cochlea, edited by P. Dallos, A. N. Popper, and R. R. Fay. New York: Springer, 1996, pp. 318–385.

    Google Scholar 

  15. Liberman, M. C. Single–neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic–frequency shift. Hear. Res. 16:33–41, 1984.

    Google Scholar 

  16. Liberman, M. C., and L. W. Dodds. Single–neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear. Res. 16:55–74, 1984.

    Google Scholar 

  17. Miller, R. L., J. R. Schilling, K. R. Franck, and E. D. Young. Effects of acoustic trauma on the representation of the vowel / e/ in cat auditory–nerve fibers. J. Acoust. Soc. Am. 101:3602–3616, 1997.

    Google Scholar 

  18. Miller, R. L., B. M. Calhoun, and E. D. Young. Contrast enhancement improves the representation of / e/–like vowels in the hearing–impaired auditory nerve. J. Acoust. Soc. Am. 106:2693–2708, 1999.

    Google Scholar 

  19. Molnar, C. E., and R. R. Pfeiffer. Interpretations of spontaneous discharge patterns of neurons in the cochlear nucleus. Proc. IEEE 56:993–1004, 1966.

    Google Scholar 

  20. Moore, B. C. J. Perceptual Consequences of Cochlear Damage. New York: Oxford, 1995.

    Google Scholar 

  21. Narayan, S. S., A. N. Temchin, A. Recio, and M. A. Ruggero. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282(5395):1882–1884, 1998.

    Google Scholar 

  22. NIH Consensus Statement. Noise Hear. Loss 8:1–24, 1990.

    Google Scholar 

  23. Nobili, R., F. Mammano, and J. Ashmore. How well do we understand the cochlea? TINS 21:159–167, 1998.

    Google Scholar 

  24. Patuzzi, R. B. Cochlear micromechanics and macromechanics. In: The Cochlea, edited by P. Dallos, A. N. Popper, and R. R. Fay. New York: Springer, 1996, pp. 186–257.

    Google Scholar 

  25. Peterson, G. E., and H. L. Barney. Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24:175–184, 1952.

    Google Scholar 

  26. Pfeiffer, R. R. Classification of response patterns of actionpotential discharges for units in the cochlear nucleus: Tone–burst stimulation. Exp. Brain Res. 1:220–235, 1966.

    Google Scholar 

  27. Pols, L. C., L. J. van der Kamp, and R. Plomp. Perceptual and physical space of vowel sounds. J. Acoust. Soc. Am. 46:458–467, 1969.

    Google Scholar 

  28. Raphael, R. M., A. S. Popel, and W. E. Brownell. A membrane bending model of outer hair cell electromotility. Biophys. J. 78:2844–2862, 2000.

    Google Scholar 

  29. Robles, L., and M. A. Ruggero. Mechanics of the mammalian cochlea. Physiol. Rev. 81:1305–1352, 2001.

    Google Scholar 

  30. Rose, J. E., J. F. Brugge, D. J. Anderson, and J. E. Hind. Phase–locked response to low–frequency tones in single auditory–nerve fibers of the squirrel monkey. J. Neurophysiol. 30:769–793, 1967.

    Google Scholar 

  31. Ruggero, M. A., and N. C. Rich. Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. J. Neurosci. 11:1057–1067, 1991.

    Google Scholar 

  32. Sachs, M. B. Speech encoding in the auditory nerve. In: Hearing Science, Recent Advances, edited by C. I. Berlin, San Diego: College–Hill, 1984, pp. 263–307.

    Google Scholar 

  33. Schilling, J. R., R. L. Miller, M. B. Sachs, and E. D. Young. Frequency–shaped amplification changes the neural representation of speech with noise–induced hearing loss. Hear. Res. 117:57–70, 1998.

    Google Scholar 

  34. Sewell, W. F. Neurotransmitters and synaptic transmission. In: The Cochlea, edited by P. Dallos, A. N. Popper, and R. R. Fay. New York: Springer, 1996, pp. 503–553.

    Google Scholar 

  35. Siebert, W. M. Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2:206–215, 1965.

    Google Scholar 

  36. Smith, R. L., and J. J. Zwislocki. Responses of some neurons in the cochlear nucleus to tone–intensity increments. J. Acoust. Soc. Am. 50:1520–1525, 1971.

    Google Scholar 

  37. Spector, A. A., M. Ameen, and A. S. Popel. Simulation of motor–driven cochlear outer hair cell electromotility. Biophys. J. 81:11–24, 2001.

    Google Scholar 

  38. Stone, J. S., and E. W. Rubel. Cellular studies of auditory hair cell regeneration in birds. Proc. Natl. Acad. Sci. U.S.A. 97:11714–11721, 2000.

    Google Scholar 

  39. Wong, J. C., R. L. Miller, B. M. Calhoun, M. B. Sachs, and E. D. Young. Effects of high sound levels on responses to the vowel /eh/ in cat auditory nerve. Hear. Res. 123:61–77, 1998.

    Google Scholar 

  40. Young, E. D., and M. B. Sachs. Representation of steadystate vowels in the temporal aspects of the discharge patterns of populations of auditory–nerve fibers. J. Acoust. Soc. Am. 66:1381–1403, 1979.

    Google Scholar 

  41. Zhang, X., M. G. Heinz, I. C. Bruce, and L. H. Carney. A phenomenological model for the responses of auditory–nerve fibers: I. Nonlinear tuning with compression and suppression. J. Acoust. Soc. Am. 109:648–670, 2001.

    Google Scholar 

  42. Zheng, J., W. Shen, D. Z. He, K. B. Long, L. D. Madison, and P. Dallos. Prestin is the motor protein of cochlear outer hair cells. Nature (London) 405(6783):149–155, 2000.

    Google Scholar 

  43. Zheng, J. L., and W. Q. Gao. Overexpression of Math 1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3:580–586, 2000.

    Google Scholar 

  44. Zweig, G., R. Lipes, and J. R. Pierce. The cochlear compromise. J. Acoust. Soc. Am. 59:975–982, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, M.B., Bruce, I.C., Miller, R.L. et al. Biological Basis of Hearing-Aid Design. Annals of Biomedical Engineering 30, 157–168 (2002). https://doi.org/10.1114/1.1458592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1458592

Navigation