Skip to main content

Advertisement

Log in

Determination of an Optimal Kinematic Protocol for Computer-Assisted Evaluation of Anterior Cruciate Ligament Deficiency

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The recent development of computer-assisted techniques for surgery, anterior cruciate ligament (ACL) reconstruction in particular, provides new ways of improving intraoperative kinematic evaluation and final functional outcome. In this paper we have tried to identify the optimal protocol for ACL evaluation, which can fully exploit the novel capability of electronic sensors and computer elaboration. In this work we statistically compared the main clinical tests that are used for knee evaluation and three different numerical methods for kinematic analysis. Results showed that only passive tests that investigate rotational and anteroposterior stability could discriminate ACL status and that the most effective protocol for computerized evaluation should be based on the Lachman and Drawer test, and forced internal–external rotations at full extension for pigs and 60° , elaborated with the functional method (Martelli et al. Comput. Methods Programs Biomed. 62:77–86, 2000). © 2001 Biomedical Engineering Society.

PAC01: 8719St, 8780-y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Blankevoort, L., R. Huiskes, and A. De Lange. Helical axes of passive knee joint motions. J. Biomech. 23:1219–1229, 1990.

    Google Scholar 

  2. Chao, E. Y. S. Justification of triaxial goniometer for the measurement of joint rotation. J. Biomech. 13:989–1006, 1980.

    Google Scholar 

  3. Fukubayashi, T., P. A. Torzilli, M. F. Sherman, and R. F. Warren. An in vitro biomechanical evaluation of anterior-posterior motion of the knee, tibial displacement, rotation, and torque. J. Bone Jt. Surg., Am. Vol. 64-A:258–264, 1982.

    Google Scholar 

  4. Furman, W., J. L. Marshall, and F. G. Girgis. The anterior cruciate ligament. A functional analysis based on postmortem studies. J. Bone Jt. Surg., Am. Vol. 58-A:179–185, 1976.

    Google Scholar 

  5. Fuss, F. K. Anatomy and function of the cruciate ligaments of the domestic pig (Sus scrofa domestica): A comparison with human cruciates. J. Anat. 178:11–20, 1991.

    Google Scholar 

  6. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Google Scholar 

  7. Hart, R. A., C. D. Mote, and H. B. Skinner. A finite helical axes as a landmark for kinematic reference of the knee. J. Biomech. Eng. 113:215–222, 1991.

    Google Scholar 

  8. Hefzy, M. S., and E. S. Grood. Knee motions and their relations to the function of the anterior cruciate ligament. In: The Anterior Cruciate Ligament: Current and Future Concepts, edited by D. W. Jackson et al. New York: Raven, 1993, pp. 75–83.

    Google Scholar 

  9. Hughston, J. C. Clinical examination. In: Knee Ligaments. Injury and Repair, edited by J. C. Hughston. St. Louis, MO: Mosby, 1993, pp. 81–119.

    Google Scholar 

  10. Julliard, R., S. Lavalle´e, and V. Dessenne. Computer-assisted reconstruction of anterior cruciate ligament. Clin. Orthop. Relat. Res. 354:59–64, 1998.

    Google Scholar 

  11. Lafortune, M. A. The use of intracortical pins to measure the motion of the knee during walking. PhD. thesis, Pennsylvania State University, 1984.

  12. Markolf, K. L., J. S. Mensch, and H. C. Amstutz. Stiffness and laxity of the knee-The contributions of the supporting structures. J. Bone Jt. Surg., Am. Vol. 58-A:583–594, 1976.

    Google Scholar 

  13. Martelli, S., M. Marcacci, L. Nofrini, P. F. LaPalombara, A. Malvisi, F. Iacono, P. Vendruscolo, and M. Pierantoni. Computer- and robot-assisted total knee replacement: Analysis of a new surgical procedure. Ann. Biomed. Eng. 28:1–8, 2000.

    Google Scholar 

  14. Martelli, S., S. Zaffagnini, B. Falcioni, and M. Marcacci. Intraoperative kinematic protocol for knee joint evaluation. Comput. Methods Programs Biomed. 62:77–86, 2000.

    Google Scholar 

  15. Neeb, T. B., G. Aufdemkampe, J. H. D. Wagener, L. Mastenbroek. Assessing anterior cruciate ligament injuries: The association and differential value of questionnaires, clinical tests, and functional tests. J. Orthop. Sports Phys. Ther. 26:324–351, 1997.

    Google Scholar 

  16. Noyes, F. R., J. F. Cummings, E. S. Grood, K. A. Walz-Hasselfeld, and R. R. Wroble. The diagnosis of knee motion limits, subluxations, and ligament injury. Am. J. Sports Med. 19:163–171, 1991.

    Google Scholar 

  17. Noyes, F. R., E. S. Grood, and W. J. Suntay. Three-dimensional motion analysis of clinical stress tests for anterior knee subluxations. Acta Orthop. Scand. 60:308–318, 1989.

    Google Scholar 

  18. Pennock, G. R., and K. J. Clark. An anatomy-based coordinate system for the description of the kinematic displacements in the human knee. J. Biomech. 23:1209–1218, 1990.

    Google Scholar 

  19. Quinn, T. P., and C. D. Mote. A six degree-of-freedom acoustic transducer for rotation and translation measurements across the knee. J. Biomech. Eng. 112:371–378, 1990.

    Google Scholar 

  20. Ramsey, D. K., and P. F. Wretenberg. Biomechanics of the knee: Methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. J. Biomech. 14:595–611, 1999.

    Google Scholar 

  21. Sati, M., J. A. De Guise, and G. Drouin. Computer-assisted knee surgery: Diagnostics and planning knee surgery. Comput. Aided Surg. 2:108–120, 1997.

    Google Scholar 

  22. Shoemaker, S. C., and D. M. Daniel. The limits of the knee motion. In vitro studies. In: Knee Ligaments. Structure, Function, Injury, and Repair, edited by D. D. Akeson and W. J. O'Connor. New York: Raven, 1990, pp. 153–161.

    Google Scholar 

  23. Smith, B. A., G. A. Livesay, and S. L.-Y. Woo. Biology and biomechanics of the anterior cruciate ligament. Clin. Sports Med. 12:637–670, 1993.

    Google Scholar 

  24. Spoor, C. W., and F. E. Veldpaus. Rigid body motion calculated from spatial coordinates of markers. J. Biomech. 13:391–393, 1980.

    Google Scholar 

  25. Wang, C.-J., and P. S. Walker. Rotatory laxity of the human knee joint. J. Bone Jt. Surg., Am. Vol. 56-A:161–170, 1974.

    Google Scholar 

  26. Woltring, H. J. Representation and calculation of 3D joint movement. Hum. Movement Sci. 10:603–616, 1991.

    Google Scholar 

  27. Wu, G., and P. R. Cavanagh. ISB recommendations for standardization in the reporting of kinematic data. J. Biomech. 28:1257–1261, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, S., Zaffagnini, S., Falcioni, B. et al. Determination of an Optimal Kinematic Protocol for Computer-Assisted Evaluation of Anterior Cruciate Ligament Deficiency. Annals of Biomedical Engineering 29, 1112–1121 (2001). https://doi.org/10.1114/1.1424917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1424917

Navigation