Skip to main content
Log in

Validation of Rapid Velocity Encoded Cine Imaging of a Dynamically Complex Flow Field Using Turbo Block Regional Interpolation Scheme for k Space

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Block regional interpolation scheme for k space (BRISK) is a sparse sampling approach to allow rapid magnetic resonance imaging of dynamic events. Rapid velocity encoded cine (VEC) imaging with Turbo BRISK is potentially an important clinical diagnostic technique for cardiovascular diseases. Previously we applied BRISK and Turbo BRISK to imaging pulsatile flow in a straight tube. To evaluate the capabilities of Turbo BRISK imaging in more complex dynamic flow fields such as might exist in the human vasculature, an in vitro curved tube model, similar in geometry to the aortic arch, was fabricated and imaged under pulsatile flow conditions. Velocity maps were obtained using conventional VEC and Turbo BRISK (turbo factors 1 through 5). Comparison of the flow fields obtained with each higher order turbo factor showed excellent agreement with conventional VEC with minimal loss of information. Similarly, flow maps showed good agreement with the profiles from a laser Doppler velocimetry model. Turbo-5 BRISK, for example, allowed a 94% savings in imaging time, reducing the conventional imaging time from over 8 min to a near breath-hold imaging period of 31 s. Turbo BRISK shows excellent promise toward the development of a clinical tool to evaluate complex dynamic intravascular flow fields. © 2001 Biomedical Engineering Society.

PAC01: 8761Lh, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chatzimavroudis, G. P., J. N. Oshinski, R. I. Pettigrew, P. G. Walker, R. H. Franch, and A. P. Yoganathan. Quantification of mitral regurgitation with MR phase velocity mapping using a control volume method. J. Magn. Reson. Imaging 8: 577–582, 1998.

    Google Scholar 

  2. Davis, C. P., P. F. Liu, M. Hauser, S. C. Gohde, G. K. von Schulthess, and J. F. Debatin. Coronary flow and coronary flow reserve measurements in humans with breath-held magnetic resonance phase contrast velocity mapping. Magn. Reson. Med. 37: 537–544, 1997.

    Google Scholar 

  3. Doyle, M., E. G. Walsh, G. G. Blackwell, and G. M. Pohost. Block regional interpolation scheme for k space (BRISK):A rapid cardiac imaging technique. Magn. Reson. Med. 33: 163–170, 1995.

    Google Scholar 

  4. Doyle, M., E. G. Walsh, R. E. Foster, and G. M. Pohost. Rapid cardiac imaging with Turbo BRISK. Magn. Reson. Med. 37: 410–417, 1997.

    Google Scholar 

  5. Doyle, M., E. Kortright, A. S. Anayiotos, A. M. Elmahdi, E. G. Walsh, A. R. Fuisz, and G. M. Pohost. Rapid velocity encoded cine imaging with Turbo-BRISK. J. Cardiovasc. Magn. Reson. 1: 223–232, 1999.

    Google Scholar 

  6. Eichenberger, A. C., J. Schwitter, G. C. McKinnon, J. F. Debatin, and G. K. von Schulthess. Phase-contrast echo-planar MR imaging: Real-time quantification of flow and velocity patterns in the thoracic vessels induced by Valsalva's maneuver. J. Magn. Reson. Imaging 5: 648–655, 1995.

    Google Scholar 

  7. Foo, T. K. F., M. A. Bernstein, A. M. Aisen, R. J. Hemandez, B. D. Collick, and T. Bernstein. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195: 471–478, 1995.

    PubMed  Google Scholar 

  8. Frayne, R., D. Steinman, C. Ethier, and B. Rutt. Accuracy of MR phase contrast velocity measurements for unsteady flow. J. Magn. Reson. Imaging 5: 428–431, 1995.

    Google Scholar 

  9. Gatehouse, P. D., D. N. Firmin, S. Collins, and D. B. Longmore. Real time blood flow imaging by spiral scan phase velocity mapping. Magn. Reson. Med. 31: 504–512, 1994.

    Google Scholar 

  10. Hofman, M. B. M., S. A. Wickline, and C. H. Lorenz. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: Implications for acquisition window duration for MR flow quantification. J. Magn. Reson. Imaging 8: 568–576, 1998.

    Google Scholar 

  11. Jhooti, P., P. D. Gatehouse, R. H. Mohiaddin, G. Z. Yang, and D. N. Firmin. MR velocity mapping using reduced sampling schemes to shorten the acquisition time. Proc. Fourth Annual Meet. Int. Soc. Magn. Reson. Med. 2: 1278, 1996.

    Google Scholar 

  12. Keegan, J., D. Firmin, P. Gatehouse, and D. Longmore. The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: Phantom data and initial in vivo results. Magn. Reson. Med. 31: 526–536, 1994.

    Google Scholar 

  13. Kilner, P. J., C. C. Manzara, R. H. Mohiaddin, D. J. Pennell, M. St. John Sutton, D. N. Firmin, and D. B. Longmore. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 87: 1239–1248, 1993.

    Google Scholar 

  14. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88: 2235–2247, 1993.

    Google Scholar 

  15. Krug, B., H. Kugel, U. Hamischmacher, W. Heindel, R. Schmidt, and F. Krings. Phase-contrast pulsatility measurements: Preliminary results in normal and arteriosclerotic iliofemoral arteries. J. Magn. Reson. Imaging 5: 201–206, 1995.

    Google Scholar 

  16. Ku, D. N., C. L. Biancheri, R. I. Pettigrew, J. W. Peifer, C. P. Markou, and H. Engels. Evaluation of magnetic resonance velocimetry for steady flow. J. Biomech. Eng. 112: 464–472, 1990.

    Google Scholar 

  17. Liao, J. R., J. M. Pauly, T. J. Brosnan, and N. J. Pelc. Reduction of motion artifacts in cine MRI using variable-density spiral trajectories. Magn. Reson. Med. 37: 569–575, 1997.

    Google Scholar 

  18. Ligamneni, A., P. A. Hardy, K. A. Powell, N. J. Pelc, and R. D. White. Validation of cine phase-contrast MR imaging for motion analysis. J. Magn. Reson. Imaging 5: 331–338, 1995.

    Google Scholar 

  19. Mohiaddin, R. H., P. J. Kilner, R. S. O. Rees, and D. B. Longmore. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J. Am. Coll. Cardiol. 22: 1515–1521, 1993.

    Google Scholar 

  20. Mohiaddin, R. H., S. R. Underwood, L. Romeria, C. A. Anagnostopoulos, S. P. Karwatowski, R. Laney, and J. Somerville. Comparison between cine magnetic resonance velocity mapping and first pass radionuclide angiography for quantitating intracardiac shunts. Am. J. Cardiol. 75: 529–532, 1995.

    Google Scholar 

  21. Naylor, G. L., D. N. Firmin, and D. B. Longmore. Blood flow imaging by cine magnetic resonance. J. Comput. Assist. Tomogr. 10: 715–722, 1986.

    Google Scholar 

  22. Oshinski, J. N., D. N. Ku, D. E. Bohning, and R. I. Pettigrew. Effects of acceleration on the accuracy of MR phase velocity measurements. J. Magn. Reson. Imaging 2: 665–670, 1992.

    Google Scholar 

  23. Oshinski, J. N., W. J. Parks, C. P. Markou, H. L. Bergman, B. E. Larson, D. N. Ku, S. Mukunda, and R. I. Pettigrew. Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J. Am. Coll. Cardiol. 28: 1818–1826, 1996.

    Google Scholar 

  24. Poutanen, V. P., R. Kivisaari, A. M. Hakkinen, S. Savolainen, P. Hekali, and C. G. S. Nordenstam. Multiphase segmented k-space velocity mapping in pulsatile flow wave-forms. J. Magn. Reson. Imaging 16: 261–269, 1998.

    Google Scholar 

  25. Sakuma, H., L. M. Blake, T. M. Amidon, M. O'sullivan, D. H. Szolar, A. P. Fruber, M. A. Bernstein, T. K. F. Foo, and C. B. Higgins. Coronary flow reserve: Noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology 198: 745–750, 1996.

    Google Scholar 

  26. Siegel, Jr., J. M., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku. The accuracy of magnetic resonance phase velocity measurements in stenotic flow. J. Biomech. 29: 1665–1672, 1992.

    Google Scholar 

  27. Spielman, D. M., J. M. Pauly, and G. H. Meyer. Magnetic resonance fluoroscopy using spirals with variable sampling densities. Magn. Reson. Med. 34: 388–394, 1995.

    Google Scholar 

  28. Spritzer, C. E., N. J. Pelc, J. N. Lee, A. J. Evans, H. D. Sostman, and S. J. Riederer. Rapid MR imaging of blood flow with a phase-sensitive, limited-flip-angle, gradient recalled pulse sequence: Preliminary experience. Radiology 176: 255–262, 1990.

    Google Scholar 

  29. Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flow. J. Magn. Reson. Imaging 7: 339–346, 1997.

    Google Scholar 

  30. Walker, P. G., S. Oyre, E. M. Pedersen, K. Houlind, F. S. A. Guenet, and A. P. Yoganathan. A new control volume method for calculating valvular regurgitation. Circulation 92: 579–586, 1995.

    Google Scholar 

  31. Westenberg, J. J. M., M. N. J. M. Wasser, R. J. van der Geest, P. M. T. Pattynama, A. de Roos, J. Vanderschoot, and J. H. C. Reiber. Variations in blood flow waveforms in stenotic renal arteries by 2D phase-contrast cine MRI. J. Magn. Reson. Imaging 8: 590–597, 1998.

    Google Scholar 

  32. Weston, S. J., N. B. Wood, G. Tabor, A. D. Gosman, and D. N. Firmin. Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend. Magn. Reson. Med. 8: 1158–1171, 1998.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortright, E., Doyle, M., Anayiotos, A.S. et al. Validation of Rapid Velocity Encoded Cine Imaging of a Dynamically Complex Flow Field Using Turbo Block Regional Interpolation Scheme for k Space. Annals of Biomedical Engineering 29, 128–134 (2001). https://doi.org/10.1114/1.1349702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1349702

Navigation